Advertisement

Journal of Sol-Gel Science and Technology

, Volume 50, Issue 2, pp 229–240 | Cite as

Hydrogen peroxide induced formation of peroxystannate nanoparticles

  • Sergey Sladkevich
  • Vitaly Gutkin
  • Ovadia Lev
  • Elena A. Legurova
  • Dzhalil F. Khabibulin
  • Martin A. Fedotov
  • Vladimir Uvarov
  • Tatiana A. Tripol’skaya
  • Petr V. Prikhodchenko
Special Edition: Celebrating the 60th Anniversary of Professor David Avnir

Abstract

Stable, amorphous potassium peroxystannate nanoparticles of controlled average size—in the range 10–100 nm—and of controlled hydrogen peroxide content—in the range of 19–30 wt%—were synthesized by hydrogen peroxide induced polymerization in water–potassium hexahydroxostannate solutions. The sol phase and the precipitate were characterized by vibrational spectroscopies, 119Sn NMR, XPS and XRD using crystalline K2Sn(OH)6 and K2Sn(OOH)6 reference materials. This is the first study to show that peroxocoordination induces polymerization of a main group element. 119Sn NMR studies show that peroxotin coordination and polymerization took place already in the hydrogen peroxide–water phase. The high abundance of peroxotin bonds revealed by 119Sn MAS NMR, vibrational spectroscopy, and XPS suggests that the particles are predominantly made of peroxo bridged tin networks. Although the particles are highly stable in the dry phase as well as in alcohol solutions and do not lose hydrogen peroxide upon storage, they release their stored hydrogen peroxide content by exposure to water.

Keywords

Tin Hydrogen peroxide Peroxytin Peroxostannate Peroxocoordination Solid phase active oxygen Nanoparticles 

Notes

Acknowledgments

We thank the Unit for Nanoscopic Characterisation, The Harwey Kreuger Family Center for Nanoscience and Nanotechnology of the Hebrew University of Jerusalem for XPS, XRD, SEM and TEM analysis. We gratefully acknowledge the financial support of the Israel Science foundation and the contribution of the Israel Ministry of Science Scientific Infrastructure program. P. P. is grateful to the European Union for funding under the Aquachem network (Contract MRTN503864), and acknowledges the financial support of the post doctoral Valazzi-Pikovsky Fellowship, the Russian Foundation for Basic Research (Grant 08-03-00537) and the Russian Federal Agency of Science and Innovations (MК-3120.2008.3).

References

  1. 1.
    (a) Ribeiro C, Vila C, Stroppa DB, Mastelaro VR, Bettini J, Longo E, Leite ER (2007) J Phys Chem C 111:5871; (b) Nyman M, Hobbs DT (2006) Chem Mater 18:6425; (c) Bonino F, Damin A, Ricchiardi G, Ricci M, Spano G, D’Aloisio R, Zecchina A, Lamberti C, Prestipino C, Bordiga S (2004) J Phys Chem B 108:3573; (d) Spano E, Tabacchi G, Gamba A, Fois E (2006) J Phys Chem B 110:21651; (e) Gao Y, Masuda Y, Koumoto K (2004) Langmuir 20:3188; (f) Gao Y, Masuda Y, Ohta H, Koumoto K (2004) Chem Mater 16:2615Google Scholar
  2. 2.
    Schumb WC, Satterfield CN, Wentworth RP (1955) Hydrogen peroxide. Reinhold Publishing Corp, New YorkGoogle Scholar
  3. 3.
    Batzill M, Diebold U (2005) Prog Surf Sci 79:47CrossRefGoogle Scholar
  4. 4.
    (a) Wang S, Zhou G, Lu M, Zhou Y, Wang S, Yang Z (2006) J Am Ceram Soc 89:2956; (b) Xing X, Chen J, Wei G, Deng J, Liu G (2004) J Am Ceram Soc 87:1371; (c) Lana-Villarreal T, Boschloo G, Hagfeldt A (2007) J Phys Chem C 111:5549Google Scholar
  5. 5.
    Prikhodchenko PV, Churakov AV, Novgorodov BN, Kochubei DI, YuB Muravlev, Ippolitov EG (2003) Russ J Inorg Chem 48:16Google Scholar
  6. 6.
    Gun J, Lev O, Regev O, Kucernak A (1998) J Sol–Gel Sci Technol 13:189CrossRefGoogle Scholar
  7. 7.
    Kinrade SD, Holah DG, Hill GS, Menuz KE, Smith CR (1995) J Wood Chem Technol 15:203CrossRefGoogle Scholar
  8. 8.
    (a) Żegliński J, Cabaj A, Strankowski M, Czerniak J, Haponiuk JT (2007) Colloids Surf B 54:165; (b) Żegliński J, Piotrowski GP, Piękos R (2006) J Mol Struct 794:83Google Scholar
  9. 9.
    (a) Pfaff G (1995) Mater Sci Eng B 33:156; (b) Pfaff G (1994) Thermochim Acta 237:83Google Scholar
  10. 10.
    (a) Prikhodchenko PV, Ustinova EA, Fedotov MA, Ippolitov EG (2004) Russ J Inorg Chem 49:1562; (b) Prikhodchenko PV, Privalov VI, Tripol’skaya TA, Ippolitov EG (2001) Doklady Chemistry 381:327; (c) Prikhodchenko PV, Privalov VI, Tripol’skaya TA, Ippolitov EG (2001) Russ J Inorg Chem 46:1881Google Scholar
  11. 11.
    (a) Dirschell W, Moersler B (1964) Liebigs Ann Chem 677:177; (b) Giguère PA, Liu ID, Dugdale JS, Morrison JA (1954) Can J Chem 32:117Google Scholar
  12. 12.
    Maass O, Hatcher WH (1920) J Am Chem Soc 42:2569CrossRefGoogle Scholar
  13. 13.
    (a) Jacobs H, Stahl R (2000) Z Anorg Allg Chem 626:1863; (b) Troyanov SI, Kostrikin AV, Spiridonov FM, Lin’ko IV, Ezhov AI, Martynova SV, Zaitsev BE (2001) Russ J Inorg Chem 46:496Google Scholar
  14. 14.
    Charlot G (1961) Les méthodes de la Chimie Analytique: Analyse Quantitative Minérale. Masson et Cie, ParisGoogle Scholar
  15. 15.
    (a) Mauro E, Alvisi M, Mirenghi L, Leo G, Siciliano P, Vasanelli L (2001) J Am Ceram Soc 84:48; (b) Ararat Ibarguen C, Mosquera A, Parra R, Castro MS, Rodríguez-Páez JE (2007) Mater Chem Phys 101:433; (c) Giuntuni JC, Granier W, Zanchetta JV, Taha A (1990) J Mater Sci Lett 9:1383; (d) Orel B, Lavrenčič-Štangar U, Crnjak-Orel Z, Bukovec P, Kosec M (1994) J Non-Cryst Solids 167:272; (e) Jezowska-Trzebiatowska B, Hanuza J, Wojciechowski W (1967) Spectrochim Acta 23A:2631Google Scholar
  16. 16.
    (a) Arnau JL, Giguère PA, Abe M, Taylor RC (1974) Spectrochim Acta 30A:777; (b) Pettersson M, Tuominen S, Räsänen M (1997) J Phys Chem A 101:1166Google Scholar
  17. 17.
    (a) Jones DP, Griffith WP (1980) J Chem Soc Dalton Trans 2526; (b) Carrondo MAAF de CT, Griffith WP, Jones DP, Skapski AC (1977) J Chem Soc Dalton Trans 2323; (c) Jones DP, Griffith WP (1980) Spectrochim Acta 36A:375Google Scholar
  18. 18.
    Chumaevskii NA, Prikhodchenko PV, Minaeva NA, Ippolitov EG (2003) Russ J Inorg Chem 48:1538Google Scholar
  19. 19.
    Nakamoto K (1970) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, New YorkGoogle Scholar
  20. 20.
    (a) Kawabe T, Shimomura S, Karasuda T, Tabata K, Suzuki K, Yamaguchi Y (2000) Surf Sci 448:101; (b) Nagasawa Y, Choso T, Karasuda T, Shimomura S, Ouyang F, Tabata K, Yamaguchi Y (1999) Surf Sci 433–435:226Google Scholar
  21. 21.
    (a) Colton R, Dakternieks D, Harvey C-A (1982) Inorg Chim Acta 61:l; (b) Kidd RG, Spinney HG (1973) Inorg Chem 12:1967; (c) Vladimiroff T, Malinowski E (1967) J Chem Phys 46:1830Google Scholar
  22. 22.
    O’Dell LA, Savin SLP, Chadwick AV, Smith ME (2005) Nanotechnology 16:1836CrossRefADSGoogle Scholar
  23. 23.
    (a) Razuvaev GA, Yablokov VA, Ganyushkin AV, Shklover VE, Tsinker I, Struchkov YuT (1978) Dokl Akad Nauk SSSR 242:132; (b) Shklover VE, Ad’Yaasuren P, Tsinker I, Yablokov VA, Ganyushkin AV, Struchkov YuT (1980) Zh Strukt Khim 211:12; (c) Königstein D, Jansen M (1996) Monatsh Chem 127:1221Google Scholar
  24. 24.
    (a) Chorley RW, Hitchcock PB, Lappert MF (1992) J Chem Soc Chem Commun 525; (b) Cardin CJ, Cardin DJ, Devereux MM, Convery MA (1990) J Chem Soc Chem Commun 1461Google Scholar
  25. 25.
    (a) Breunig HJ, Krüger T, Lork E (2002) J Organomet Chem 648:209; (b) Blicke FF, Oakdale UO, Smith FD (1931) J Am Chem Soc 53:1025; (c) Sharutin VV, Pakusina AP, Subacheva OV, Sharutina OK, Gerasimenko AV (2003) Russ J Coord Chem 29:395Google Scholar
  26. 26.
    Carrondo MAAF de CT, Skapski AC (1978) Acta Crystallogr Sect B: Struct Sci 34:3551CrossRefGoogle Scholar
  27. 27.
    (a) Dinnebier RE, Vensky S, Stephens PW, Jansen M (2002) Angew Chem Int Ed 41:1922; (b) Dinnebier RE, Vensky S, Jansen M (2003) Chem Eur J 9:4391Google Scholar
  28. 28.
    Powell RD, Skapski AC (1998) Inorg Chim Acta 148:15CrossRefGoogle Scholar
  29. 29.
    (a) Naumov DY, Virovets AV, Podberezskaya NV, Novikov PB, Politov AA (1997) J Struct Chem 38:772; (b) Sivertsen BK (1969) Z Kristallogr Kristallgeometrie Kristallphys Kristallchem 130:449; (c) Harvey MA, Baggio S, Garland MT, Burton G, Baggio R (2001) Aust J Chem 54:307; (d) Harvey MA, Baggio S, Garland MT, Baggio R (2001) Aust J Chem 54:711Google Scholar

Copyright information

©  Springer Science+Business Media, LLC  2008

Authors and Affiliations

  • Sergey Sladkevich
    • 1
  • Vitaly Gutkin
    • 1
    • 2
  • Ovadia Lev
    • 1
  • Elena A. Legurova
    • 3
  • Dzhalil F. Khabibulin
    • 4
  • Martin A. Fedotov
    • 4
  • Vladimir Uvarov
    • 2
  • Tatiana A. Tripol’skaya
    • 3
  • Petr V. Prikhodchenko
    • 1
    • 3
  1. 1.The Casali Institute and The Chemistry InstituteThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.The Harwey Kreuger Family Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemJerusalemIsrael
  3. 3.Institute of General and Inorganic Chemistry RASMoscowRussia
  4. 4.Boreskov Institute of CatalysisSB RASNovosibirskRussia

Personalised recommendations