Advertisement

Journal of Sol-Gel Science and Technology

, Volume 48, Issue 1–2, pp 182–186 | Cite as

Bottom-up and top-down approach for periodic microstructures on thin oxide films by controlled photo-activated chemical processes

  • Masahide Takahashi
  • Koji Uemura
  • Takahiro Maeda
  • Jianxi Yao
  • Yomei Tokuda
  • Toshinobu Yoko
  • Stefano Costacurta
  • Luca Malfatti
  • Plinio Innocenzi
Original Paper

Abstract

Micropatterned oxide films were fabricated by controlling the photo-induced processes, such as buckling driven wrinkle formation and photomigration, in the photo monomer-oxide precursor hybrid films. The photo-induced process depended on the wavelength of the illuminated light, that is to say, the penetration depth of the UV light for polymerization; a uniform illumination of 254 nm light from the incoherent black light induces the surface buckling which resulted in the self-organized formation of a long-range ordered surface wrinkle structure (bottom-up process). On the other hand, 325 nm or 365 nm illumination enables us to fabricate a microstructure by the conventional photolithography technique, such as the mask method or holographic illumination (top-down process). The simultaneous illumination of the black light (uniform, 254 nm) and the He–Cd laser (holographic, 325 nm) resulted in the formation of a 2D micropattern in which the holographic gratings are formed by the holographic illumination together with the array of dots by surface buckling. This result indicates that the present microfabrication offers an integration of the top-down and bottom-up approach to realize the simultaneous fabrication of multi-scale and complex microstructured thin oxide films for photonic applications.

Keywords

Micro fabrication Buckling Photomigration Titania Patterning UV curing coating 

References

  1. 1.
    Kley EB, Wittig LC, Tünnermann A (2004) In: Microopics, Chap. 1. Springer-Verlag, New YorkGoogle Scholar
  2. 2.
    Johnson SG, Joannopouos JD (2002) In: Photonic crystal the road map from theory to practice, Chap. 1. Kluwer Academic Publisher, BostonGoogle Scholar
  3. 3.
    Ozin GA, Arsenault AC (2005) Nanochemistry. RSC Publishing, NorthamptonGoogle Scholar
  4. 4.
    Yabu H, Shimomura M (2005) Chem Mater 17:5231; Karthaus O, Grasjo L, Maruyama N, Shimomura M (1999) Chaos 9:308Google Scholar
  5. 5.
    Yabu H, Shimomura M (2005) Adv Func Mater 15:575CrossRefGoogle Scholar
  6. 6.
    Poguea RT, Natarajana LV, Siweckia SA, Tondigliaa VP, Sutherlanda RL, Bunning TJ (2001) Polymer 41:733CrossRefGoogle Scholar
  7. 7.
    Zalamova K, Roma N, Pomar A, Morlens S, Puig T, Gazquez J, Carrillo AE, Sandiumenge F, Ricart S, Mestres N, Obradors X (2006) Chem Mater 18:5897; Mori R, Takahashi M, Yoko T (2004) Mater Res Bull 39:2137Google Scholar
  8. 8.
    Takahashi M, Maeda T, Uemura K, Yao J, Tokuda Y, Yoko T, Kaji H, Marcelli A, Innocenzi P (2007) Adv Mater 19:4343CrossRefGoogle Scholar
  9. 9.
    Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM (1998) Nature 393:146CrossRefGoogle Scholar
  10. 10.
    Kang DJ, Park JU, Bae BS, Nishii J, Kintaka K (2003) Opt Express 11:1144CrossRefGoogle Scholar
  11. 11.
    Takahashi M, Tsukigi K, Uchino T, Yoko T (2001) Thin Solid Films 388:231CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Masahide Takahashi
    • 1
    • 2
  • Koji Uemura
    • 1
  • Takahiro Maeda
    • 1
  • Jianxi Yao
    • 1
  • Yomei Tokuda
    • 1
  • Toshinobu Yoko
    • 1
  • Stefano Costacurta
    • 2
  • Luca Malfatti
    • 2
  • Plinio Innocenzi
    • 2
  1. 1.Institute for Chemical ResearchKyoto UniversityKyotoJapan
  2. 2.Laboratorio di Scienza dei Materiali e Nanotecnologie, D.A.P.Università di Sassari and CR-INSTMAlghero, SassariItaly

Personalised recommendations