Journal of Sol-Gel Science and Technology

, Volume 48, Issue 1–2, pp 32–39 | Cite as

Surface functionalization of two-photon dye-doped mesoporous silica nanoparticles with folic acid: cytotoxicity studies with HeLa and MCF-7 cancer cells

  • Valérie Lebret
  • Laurence Raehm
  • Jean-Olivier Durand
  • Monique Smaïhi
  • Martinus H. V. Werts
  • Mireille Blanchard-Desce
  • Delphine Méthy-Gonnod
  • Catherine Dubernet
Original Paper


Two-photon dye-doped mesoporous silica nanoparticles (NPs) have been conjugated with folic acid (FA) in order to obtain efficient nanotools for bioimaging of cancer cells. The surface of the NPs was first functionalized with 3-aminopropyltriethoxysilane. The amine-covered NPs were subsequently reacted with an activated ester derivative of FA. Cytotoxicity studies performed with MCF7 and HeLa cancer cells demonstrate that these functionalized NPs are much less cytotoxic than the non-functionalized NPs against both cell lines. Unfortunately, the grafting of FA enables the formation of charge transfer complexes between the two-photon dye and FA which leads to quenching of the fluorescence of the NPs. Hence although these NPs cannot be used for biomaging purposes, they offer interesting potentialities if the two-photon dye used can be replaced by a two-photon fluorophore which do not interact with FA or if the interaction between the encapsulated dye and FA can be prevented by using a suitable spacer between the surface and the FA moiety.


Mesoporous nanoparticle Cancer cells Fluorescence Biphotonic MTT Charge transfer complex Chromophore 



This project was sponsored by ACI nanobioscience NR 077. VL thanks CNRS and Region Languedoc Roussillon for a doctoral fellowship. The Rennes group acknowledges equipment grants from CNRS, Rennes Métropole and Université de Rennes 1. We thank David N’Guyen and Pr Etienne Duguet for potential Zeta measurements, kind and useful discussions. We thank Corine Gerardin for DLS Measurements.


  1. 1.
    Lu J, Liong M, Zink JI, Tammanoi F (2007) Small 3:1341CrossRefGoogle Scholar
  2. 2.
    Slowing II, Trewyn BG, Giri S, Lin VSY (2007) Adv Funct Mater 17:1225CrossRefGoogle Scholar
  3. 3.
    Slowing II, Trewyn BG, Lin VSY (2007) J Am Chem Soc 129:8845CrossRefGoogle Scholar
  4. 4.
    Trewyn BG, Giri S, Slowing II, Lin VSY (2007) Chem Commun 3236Google Scholar
  5. 5.
    Trewyn BG, Slowing II, Giri S, Chen H-T, Lin VSY (2007) Acc Chem Res 40:846CrossRefGoogle Scholar
  6. 6.
    Slowing I, Trewyn BG, Lin VSY (2006) J Am Chem Soc 128:14792CrossRefGoogle Scholar
  7. 7.
    Sudimack J, Lee RJ (2000) Adv Drug Deliv Rev 41:147CrossRefGoogle Scholar
  8. 8.
    Stella B, Arpicco S, Peracchia MT, Desmaele D, Hoebeke J, Renoir M, D’Angelo J, Cattel L, Couvreur P (2000) J Pharm Sci 89:1452CrossRefGoogle Scholar
  9. 9.
    Zhang Z, Lee SH, Feng S-S (2007) Biomaterials 28:1889CrossRefGoogle Scholar
  10. 10.
    Xu P, Van Kirk EA, Zhan Y, Murdoch WJ, Radosz M, Shen Y (2007) Angew Chem Int Ed 46:4999CrossRefGoogle Scholar
  11. 11.
    Kim SH, Jeong JH, Chun KW, Park TG (2005) Langmuir 21:8852CrossRefGoogle Scholar
  12. 12.
    Mansouri S, Cuie Y, Winnik F, Shi Q, Lavigne P, Benderdour M, Beaumont E, Fernandes JC (2006) Biomaterials 27:2060CrossRefGoogle Scholar
  13. 13.
    Bhattacharya R, Patra CR, Earl A, Wang S, Katarya A, Lu L, Kizhakkedathu JN, Yaszemski MJ, Greipp PR, Mukhopadhyay D, Mukherjee P (2007) Nanomedecine 3:224Google Scholar
  14. 14.
    Dixit V, Van den Bossche J, Sherman DM, Thompson DH, Andres RP (2006) Bioconjug Chem 17:603CrossRefGoogle Scholar
  15. 15.
    Wuang SC, Neoh KG, Kang E-T, Pack DW, Leckband DE (2007) J Mater Chem 17:3354CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Zhang J (2005) J Colloid Interface Sci 283:352CrossRefGoogle Scholar
  17. 17.
    Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J, Duguet E, Colombo P, Couvreur P (2005) Bioconjug Chem 16:1181CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Kohler N, Zhang M (2002) Biomaterials 23:1553CrossRefGoogle Scholar
  19. 19.
    Lebret V, Raehm L, Durand J-O, Smaïhi M, Gerardin C, Nerambourg N, Werts MH, Blanchard-Desce M (2008) Chem Mater (in press)Google Scholar
  20. 20.
    Zipfel WR, Williams RM, Webb WW (2003) Nat Biotechnol 21:1369CrossRefGoogle Scholar
  21. 21.
    Robin A-C, Gmouh S, Mongin O, Jouikov V, Werts MHV, Gautier C, Slama-Schwok A, Blanchard-Desce M (2007) Chem Commun 1334Google Scholar
  22. 22.
    Sadasivan S, Fowler CE, Khushalani D, Mann S (2002) Angew Chem Int Ed 41:2151CrossRefGoogle Scholar
  23. 23.
    Smaïhi M, Gavilan E, Durand J-O, Valtchev VP (2004) J Mater Chem 14:1347CrossRefGoogle Scholar
  24. 24.
    Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Anal Chem 67:735CrossRefGoogle Scholar
  25. 25.
    Lee RJ, Low PS (1994) J Biol Chem 269:3198Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Valérie Lebret
    • 1
  • Laurence Raehm
    • 1
  • Jean-Olivier Durand
    • 1
  • Monique Smaïhi
    • 2
  • Martinus H. V. Werts
    • 3
  • Mireille Blanchard-Desce
    • 3
  • Delphine Méthy-Gonnod
    • 4
  • Catherine Dubernet
    • 4
  1. 1.Institut Charles Gerhardt, CNRS, UMR 5253Université Montpellier 2Montpellier Cedex 05France
  2. 2.Institut Européen des Membranes, CNRS, UMR 5635Université Montpellier 2Montpellier Cedex 05France
  3. 3.Synthèse et Electrosynthèse Organiques, CNRS, UMR 6510Université Rennes 1Rennes CedexFrance
  4. 4.Centre d’Etudes Pharmaceutiques, CNRS, UMR 8612Univ Paris-SudChâtenay-Malabry CedexFrance

Personalised recommendations