Journal of Sol-Gel Science and Technology

, Volume 46, Issue 2, pp 117–125 | Cite as

Study of the crystallization pathway of Na0.5Bi0.5TiO3 thin films obtained by chemical solution deposition

  • Fabien Remondiere
  • Barbara Malič
  • Marija Kosec
  • Jean-Pierre Mercurio
Original Paper


Na0.5Bi0.5TiO3 (NBT) thin films were fabricated by a chemical solution deposition (CSD) method. A route involving the reaction between sodium and bismuth acetates and titanium n-butoxide was used to synthesise the different precursor solutions. The thermal decomposition and crystallization pathways of different modified precursors have been studied by thermal analysis and X-ray diffraction techniques. As a consequence of the modification of the precursor solutions and their different thermal behaviour, the nucleation of the stable perovskite phase happens at different temperatures depending on each case but is found to be at temperatures as low as 500 °C. For the thin film processing, the drying and pyrolysis temperatures were chosen according to the thermogravimetric data to minimize the strain resulting from the shrinkage of the film during the elimination of solvents and organic ligands. The crystallization process was studied and the experimental results are discussed in terms of structural, microstructural and electrical features investigated by field-emission scanning electron microscopy, atomic force microscopy in tapping and piezo-force modes and X-ray diffraction.


CSD Thin films Sodium bismuth titanate Na0.5Bi0.5TiO3 Lead-free perovskite 



The authors would like to thank Jena Cilensek (Institute Jozef Stefan—Ljubljana/Slovenia), Valérie Coudert (SPCTS—Limoges/France), Dr. Aiying Wu and Prof. Dr. Paula Maria Vilarinho (University of Aveiro/Portugal) for their helps in the experiments and precious discussions. They acknowledge the financial support of the EU Centre of Excellence SICER and POLECER.


  1. 1.
    Smolensky GA, Isupov VA, Agranovskaya AI, Krainik NN (1961) Soviet Phys Solid State 2:2651Google Scholar
  2. 2.
    Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric ceramics. Academic Press Inc., LondonGoogle Scholar
  3. 3.
    Zvirgzds JA, Kapostins PP, Zvirgzde JV (1982) Ferroelectrics 40(1–2):75Google Scholar
  4. 4.
    Takenaka T, Maruyama KI, Sakata K (1991) Jpn J Appl Phys 30(9B):2236CrossRefGoogle Scholar
  5. 5.
    Elkechai O, Marchet P, Thomas P, Manier M, Mercurio J-P (1997) J Mater Chem 7(1):91CrossRefGoogle Scholar
  6. 6.
    Li Y, Chen W, Zhou J, Xu Q, Sun H, Xu R (2004) Mater Sci Eng B 112(1):5CrossRefGoogle Scholar
  7. 7.
    Herabut A, Safari A (1997) J Am Ceram Soc 80(11):2954CrossRefGoogle Scholar
  8. 8.
    Jones GO, Thomas PA (2000) Acta Crystallogr Sect B: Struct Sci B56:426CrossRefGoogle Scholar
  9. 9.
    Jones GO, Thomas PA (2002) Acta Crystallogr Sect B: Struct Sci B58:168CrossRefGoogle Scholar
  10. 10.
    Kreisel J, Glazer AM, Jones G, Thomas PA, Abello L, Lucazeau G (2000) J Phys: Condens Matter 12:3267CrossRefGoogle Scholar
  11. 11.
    Buhrer CF (1962) J Chem Phys 36:798CrossRefGoogle Scholar
  12. 12.
    Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press Inc., BostonGoogle Scholar
  13. 13.
    Ryu SO (1999) Characterization of ferroelectric (1−x)SrBi2Ta2O9−xBi3TaTiO9 thin films for non-volatile memory applications. PhD thesis, Faculty of the Virginia Polytechnic Institute, Blacksburg Google Scholar
  14. 14.
    Gurkovich SR, Blum JB (1984) In: Hench LL, Ulrich DR (eds) Ultrastructure processing of ceramics, glasses and composites. Wiley, New York, pp 152–160Google Scholar
  15. 15.
    Budd KD, Day SK, Payne DA (1985) Br Ceram Proc 36:107Google Scholar
  16. 16.
    Chandler CD, Roger C, Hampden MJ (1993) Chem Rev 93(3):1205CrossRefGoogle Scholar
  17. 17.
    Scherer GW (1997) J Sol-Gel Sci Technol 8:353Google Scholar
  18. 18.
    Zhou ZH, Xue JM, Li WZ, Wang J, Zhu H, Miao JM (2004) Appl Phys Lett 85:804CrossRefGoogle Scholar
  19. 19.
    Tang XG, Wang J, Wang XX, Chan HL (2004) Chem Mater 16:5293CrossRefGoogle Scholar
  20. 20.
    Yang CH, Wang Z, Li QX, Wang JH, Yang YG, Gu SL, Yang DM, Han JR (2005) J Cryst Growth 284:136CrossRefGoogle Scholar
  21. 21.
    Wang J, Li QX, Zhou Z, Xue J (2006) Acta Mater 54:1691CrossRefGoogle Scholar
  22. 22.
    Chang DA, Choh YH, Hsieh WF, Lin P, Tseng TY (1993) J Mater Sci 28(24):6691CrossRefGoogle Scholar
  23. 23.
    Kessler VG, Hubert-Pfalzgraf LG, Daniele S, Gleizes A (1994) Chem Mater 6:2342CrossRefGoogle Scholar
  24. 24.
    Radosavljevic I, Evans JSO, Sleight AW (1998) J Solid State Chem 136(1):63CrossRefGoogle Scholar
  25. 25.
    Liu Y, Phule PP (1997) J Am Ceram Soc 80(9):2410CrossRefGoogle Scholar
  26. 26.
    Chen T-C, Li T, Zhang X, Desu SB (1997) J Mater Res 12(8):2165CrossRefGoogle Scholar
  27. 27.
    Moert M, Mikolajick T, Schindler G, Nagel N, Hartner W, Dehm C, Kohlstedt H, Waser R (2002) Appl Phys Lett 81(23):4410CrossRefGoogle Scholar
  28. 28.
    Hasenkox U, Hoffmann S, Waser R (1998) J Sol-Gel Sci Technol 12:67CrossRefGoogle Scholar
  29. 29.
    Kim CY, Sekino T, Niihara K (2003) J Am Ceram Soc 86:1464CrossRefGoogle Scholar
  30. 30.
    Hao J, Wang X, Chen R, Li L (2005) Mat Chem Phys 90:282CrossRefGoogle Scholar
  31. 31.
    Petricek V, Dusek M, Palatinus L (2000) Jana2000. The crystallographic computing system. Institute of Physics, Praha, Czech RepublicGoogle Scholar
  32. 32.
    Remondiere F, Wu A, Vilarinho PM, Mercurio J-P (2007) Appl Phys Lett 90:152905CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Fabien Remondiere
    • 1
    • 2
  • Barbara Malič
    • 2
  • Marija Kosec
    • 2
  • Jean-Pierre Mercurio
    • 1
  1. 1.Science des Procédés Céramiques et de Traitements de Surface, SPCTSUniversité de LimogesLimogesFrance
  2. 2.Electronic Ceramics DepartmentInstitut Jožef StefanLjubljanaSlovenia

Personalised recommendations