Journal of Sol-Gel Science and Technology

, Volume 46, Issue 3, pp 323–333 | Cite as

Synthesis of freestanding silica and titania-silica aerogels with ordered and disordered mesopores

  • Shengli Cao
  • Nan Yao
  • King Lun Yeung
Original Paper


Freestanding blocks of silica and titania-silica aerogels were prepared by the sol-gel method. It is possible to prepare crack-free, titania-silica aerogels with high titanium content by a careful control of the synthesis conditions. Prehydrolysis, complexation and polymer addition were used to adjust the hydrolysis and condensation rates of the silicon and titanium alkoxide precursors. Photoactive anatase TiO2 nanocrystals with a large surface area (i.e., up to 300m2g−1) were crystallized from the gel network by the high-temperature ethanol supercritical drying, and the resulting aerogel blocks were gas permeable and display a transition-regime diffusion behavior. Pore and volume shrinkages were observed in samples prepared by ethanol supercritical drying when the titanium content was increased resulting in a lower flux. Adding Pluronic P123 creates ordered mesopore domains and produces large pore aerogels even at high titanium contents. The photocatalytic oxidation reaction of trichloroethylene was performed by flowing the reactant gas mixture through the UV-irradiated aerogel blocks with excellent results.


Environmental catalyst Photocatalytic oxidation Anatase TiO2 Volatile organic compound (VOC) Trichloroethylene 



The authors would like to thank the financial support from the Hong Kong Research Grant Council and the Hong Kong Innovation and Technology Commission. We also thank the technical help from the Material Preparation and Characterization Facility (MCPF) and the Advanced Engineering Material Facility (AEMF) of the Hong Kong University of Science and Technology.


  1. 1.
    Neri G, Rizzo G, Crisafulli C, De Luca L, Donato A, Musolino MG, Pietropaolo R (2005) Appl Catal A-Gen 295:116CrossRefGoogle Scholar
  2. 2.
    Samantaray SK, Parida K (2004) J Mater Sci 39:3549CrossRefGoogle Scholar
  3. 3.
    Moussa N, Ghorbel A, Grange P (2005) J Sol Gel Sci Techn 33:127CrossRefGoogle Scholar
  4. 4.
    Gisler A, Burgi T, Baiker A (2004) J Catal 222:461CrossRefGoogle Scholar
  5. 5.
    Smirnova N, Eremenko A, Gayvoronskij V, Petrik I, Gnatyuk Y, Krylova G, Korchev A, Chuiko A (2004) J Sol Gel Sci Techn 32:357CrossRefGoogle Scholar
  6. 6.
    Cao S, Yeung KL, Yue PL (2006) Appl Catal B-Environ 68:99CrossRefGoogle Scholar
  7. 7.
    Lee CH, Lin TS, Mou CY (2007) J Phys Chem C 111:3873CrossRefGoogle Scholar
  8. 8.
    Tai Y, Murakami J, Tajiri K, Ohashi F, Date M, Tsubota S (2004) Appl Catal A-Gen 268:183CrossRefGoogle Scholar
  9. 9.
    Klein S, Thorimbert S, Maier WF (1996) J Catal 163:476CrossRefGoogle Scholar
  10. 10.
    Yang J, Asaeda M (2003) Sep Purif Technol 32:29CrossRefGoogle Scholar
  11. 11.
    Hoang VT, Huang Q, Eic M, Do TO, Kaliaguine S (2005) Langmuir 21:2051CrossRefGoogle Scholar
  12. 12.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548CrossRefGoogle Scholar
  13. 13.
    Zhao DY, Huo QS, Feng JL, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024CrossRefGoogle Scholar
  14. 14.
    Brinker CJ, Scherer GW (1990) Sol-Gel science: the physics and chemistry of sol-gel processing. Academic Press, San DiegoGoogle Scholar
  15. 15.
    Schneider M, Baiker A (1995) Catal Rev Sci Eng 37:515CrossRefGoogle Scholar
  16. 16.
    Ko EI (1993) Chemtech 23:31Google Scholar
  17. 17.
    Rao AV, Parvathy NN (1993) J Mater Sci 28:3021CrossRefGoogle Scholar
  18. 18.
    Wagh PB, Begag R, Pajonk GM, Rao AV, Haranath D (1999) Mater Chem Phys 57:214CrossRefGoogle Scholar
  19. 19.
    Pierre AC, Pajonk GM (2002) Chem Rev 102:4243CrossRefGoogle Scholar
  20. 20.
    Fricke J, Emmerling A (1992) Struct Bond 77:37Google Scholar
  21. 21.
    Hosticka B, Norris PM, Brenizer JS, Daitch CE (1998) J Non-Cryst Solids 225:293CrossRefGoogle Scholar
  22. 22.
    Yoda S, Ohtake K, Takebayashi Y, Sugeta T, Sako T (2000) J Sol Gel Sci Techn 19:719CrossRefGoogle Scholar
  23. 23.
    Yoda S, Tasaka Y, Uchida K, Kawai A, Ohshima S, Ikazaki F (1998) J Non-Cryst Solids 225:105CrossRefGoogle Scholar
  24. 24.
    Yoda S, Otake K, Takebayashi Y, Sugeta T, Sato T (2001) J Non-Cryst Solids 285:8CrossRefGoogle Scholar
  25. 25.
    Yoda S, Ohtake K, Takebayashi Y, Sugeta T, Sako T, Sato T (2000) J Mater Chem 10:2151CrossRefGoogle Scholar
  26. 26.
    Kim W, Hong IK (2003) J Ind Eng Chem 9:728Google Scholar
  27. 27.
    Cao S, Yeung KL, Yue PL (2006) Stud Surf Sci Catal 159:465CrossRefGoogle Scholar
  28. 28.
    Cao S, Yeung KL, Yue PL (2007) Appl Catal B Environ 76:64CrossRefGoogle Scholar
  29. 29.
    Yao N, Cao S, Yeung KL (in press) Micropor Mesopor MatGoogle Scholar
  30. 30.
    Morris CA, Anderson ML, Stroud RM, Merzbacher CI, Rolison DR (1999) Science 284:622CrossRefGoogle Scholar
  31. 31.
    Hanprasopwattana A, Srinivasan S, Sault AG, Datye AK (1996) Langmuir 12:3173CrossRefGoogle Scholar
  32. 32.
    Maira AJ, Yeung KL, Lee CY, Yue PL, Chan CK (2000) J Catal 192:185CrossRefGoogle Scholar
  33. 33.
    Yeung KL, Maira AJ, Stolz J, Hung EWC, Ho NKC, Wei A-C, Soria J, Chao K-J, Yue P-L (2002) J Phys Chem B 106:4608CrossRefGoogle Scholar
  34. 34.
    Yeung KL, Yau ST, Maira AJ, Coronado JM, Soria J, Yue PL (2003) J Catal 219:107CrossRefGoogle Scholar
  35. 35.
    Maira AJ, Yeung KL, Soria J, Coronado JM, Belver C, Lee CY, Augugliaro V (2000) Appl Catal B Environ 29:327CrossRefGoogle Scholar
  36. 36.
    Coronado JM, Maira AJ, Conesa JC, Yeung KL, Augugliaro V, Soria J (2001) Langmuir 17:5368CrossRefGoogle Scholar
  37. 37.
    Maira AJ, Coronado JM, Augugliaro V, Yeung KL, Conesa JC, Soria J (2001) J Catal 202:413CrossRefGoogle Scholar
  38. 38.
    Maira AJ, Lau WN, Lee CY, Yue PL, Chan CK, Yeung KL (2003) Chem Eng Sci 58:959CrossRefGoogle Scholar
  39. 39.
    Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Adv Mater 11:579CrossRefGoogle Scholar
  40. 40.
    Schneider M, Baiker A (1992) J Mater Chem 2:587CrossRefGoogle Scholar
  41. 41.
    Brodsky CJ, Ko EI (1994) J Mater Chem 4:651CrossRefGoogle Scholar
  42. 42.
    Schneider M, Baiker A (1997) Catal Today 35:339CrossRefGoogle Scholar
  43. 43.
    Watson JM, Cooper AT, Flora JRV (2005) Environ Eng Sci 22:666CrossRefGoogle Scholar
  44. 44.
    Yoda S, Suh DJ, Sato T (2001) J Sol Gel Sci Techn 22:75CrossRefGoogle Scholar
  45. 45.
    Dutoit DCM, Schneider M, Baiker A (1995) J Catal 153:165CrossRefGoogle Scholar
  46. 46.
    Dutoit DCM, Schneider M, Hutter R, Baiker A (1996) J Catal 161:651CrossRefGoogle Scholar
  47. 47.
    Dutoit DCM, Gobel U, Schneider M, Baiker A (1996) J Catal 164:433CrossRefGoogle Scholar
  48. 48.
    Amlouk A, Mir LEl, Kraiem S, Alaya S (2006) J Phys Chem Solids 67:1464CrossRefGoogle Scholar
  49. 49.
    Lenza RFS, Vasconcelos WL (2001) Mater Res 4:189Google Scholar
  50. 50.
    Miller JB, Johnston ST, Ko EI (1994) J Catal 150:311CrossRefGoogle Scholar
  51. 51.
    Beurroies I, Bourret D, Sempere R, Duffours L, Phalippou J (1995) J Non-Cryst Solids 186:328CrossRefGoogle Scholar
  52. 52.
    Reichenauer G, Stumpf C, Fricke J (1995) J Non-Cryst Solids 186:334CrossRefGoogle Scholar
  53. 53.
    Phalippou J, Scherer GW, Woignier T, Bourret D, Sempere R (1995) J Non-Cryst Solids 186:64CrossRefGoogle Scholar
  54. 54.
    Liu LF, Barford J, Yeung KL, Si G (2007) J Environ Sci China 19:745Google Scholar
  55. 55.
    Maira AJ, Lau WN, Lee CY, Yue PL, Chan CK, Yeung KL (2003) Chem Eng Sci 58:959CrossRefGoogle Scholar
  56. 56.
    Ho KY, Yeung KL (2006) J Catal 242:131CrossRefGoogle Scholar
  57. 57.
    Lee S-J, Gavriilidis A, Pankhurst QA, Kyek A, Wagner FE, Wong PCL, Yeung KL (2001) J Catal 200:298CrossRefGoogle Scholar
  58. 58.
    Ho KY, Yeung KL (2006) Stud Sur Sci Catal 159:413Google Scholar
  59. 59.
    Ho KY, Yeung KL (2007) Gold Bull 40:15Google Scholar
  60. 60.
    Lui PY, Yeung KL (2006) Stud Sur Sci Catal 159:289Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemical EngineeringThe Hong Kong University of Science and TechnologyKowloonP.R. China

Personalised recommendations