Journal of Sol-Gel Science and Technology

, Volume 46, Issue 1, pp 39–45 | Cite as

Sol–gel combustion synthesis of BNBT powders

  • Elisa Mercadelli
  • Carmen Galassi
  • Anna Luisa Costa
  • Stefania Albonetti
  • Alessandra Sanson
Original Paper


Ba-modified bismuth sodium titanate with composition 0.94[(Bi0.5Na0.5)TiO3]-0.06BaTiO3 (BNBT) was prepared by a citrate nitrate sol–gel combustion method. The sol was obtained using barium acetate, bismuth nitrate, sodium nitrate and a peroxo-citrate complex of titanium isopropoxide as starting precursors. Various molar ratios of citrate/nitrate (C/N) were considered for the sol production. The corresponding gels were fired at different temperatures (300, 400, 500 °C) in order to evaluate the conditions necessary to obtain the decomposition of the precursors and the formation of the pure BNBT perovskitic phase in a single step. The best conditions to obtain the desired phase are: (C/N) = 0.2, and combustion temperature of 500 °C. Ball milled powders were densified at a temperature 100 °C lower than the one generally used for powder produced with the conventional mixed oxide route. The electrical properties are comparable to those reported for conventionally prepared materials.


Sol–Gel synthesis Citrate nitrate sol–gel combustion Lead free piezoelectric material Ba modified Bismuth Sodium Titanate BNBT Ceramic material 


  1. 1.
    Ballato A (1996) IEEE ultrasonics symposium, pp 575–583Google Scholar
  2. 2.
    Setter N (2002) Piezoelectric materials in devices. In: Setter N (ed). Lausanne, SwitzerlandGoogle Scholar
  3. 3.
    Jaffe B, Cook WR, Jaffe H (ed) (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
  4. 4.
    Maeder MD, Damjanovic D, Setter N (2004) J Electroceramics 13:385CrossRefGoogle Scholar
  5. 5.
    Takenaka T (1999) Ferroelectrics 230:389CrossRefGoogle Scholar
  6. 6.
    Takenaka T, Nagata H (1999) Key Eng Mater 157–158:57Google Scholar
  7. 7.
    Smolensky GS, Isupov VA, Agranovskaya AI, Krainik NN (1961) Sov Phys-Solid State 2:1651Google Scholar
  8. 8.
    Isupov VA, Strelests PL, Serova IA, Yataenko ND, Shirobokikh TM (1964) Sov Phys-Solid State 6:615Google Scholar
  9. 9.
    Yan H, Xiao D, Yu P, Zhu J, Lin D, Li G (2005) Mater Design 26:474CrossRefGoogle Scholar
  10. 10.
    Takenaka T, Maruyama K, Sakata K (1991) Jpn J Appl Phys, Part 1 30:2236CrossRefGoogle Scholar
  11. 11.
    Wang XX, Or SW, Tang XG, Chan HLW, Choy PK, Liu PCK (2005) Solid State Commun 134:659CrossRefGoogle Scholar
  12. 12.
    Wang XX, HLW Chan, Choy CL (2005) Appl Phys A: Mater Sci Process 80:333CrossRefGoogle Scholar
  13. 13.
    Qiu J, Tani J, Orikasa K, Matsuta K, Takahashi H (2005) Nippon Kinzoku Gakkaishi/J Jpn Instit Met 69:676Google Scholar
  14. 14.
    Abe J, Kobune M, Nishimura T, Yazaw T, Nakai Y (2006) Integr Ferroelectrics 80:87CrossRefGoogle Scholar
  15. 15.
    Abe J, Kobune M, Yazawa T, Nakai Y, Osaka S (2005) J Korean Phys Soc 46:138Google Scholar
  16. 16.
    West DL, Payne DA (2003) J Am Ceram Soc 86:192CrossRefGoogle Scholar
  17. 17.
    Xu Q, Chen S, Chen W, Huang D, Zhou J, Sun H, Li Y (2006) J Mater Sci 41:6146CrossRefGoogle Scholar
  18. 18.
    Kim CY, Sekino T, Niihara K (2003) J Am Ceram Soc 86:1464Google Scholar
  19. 19.
    Kundu A, Soukhojak AN (2006) Appl Phys A: Mater Sci Process 82:309CrossRefGoogle Scholar
  20. 20.
    Saïd S, Mercurio JP (2001) J Eur Ceram Soc 21:1333CrossRefGoogle Scholar
  21. 21.
    Zhao M-L, Wang C-L, Wang J-F, Chen H-C, Zhong W-L (2004) Wuli Xuebao/Acta Physica Sinica 53:2357Google Scholar
  22. 22.
    Sanson A, Galassi C, Costa AL, Russo U (2001) Proc ferroelectrics. UK Sheffield, UK, p 119Google Scholar
  23. 23.
    Ma YJ, Cho JH, Lee YH, Kim BI (2006) Mater Chem Phys 98:5CrossRefGoogle Scholar
  24. 24.
    Cho J-H, Ma Y-J, Lee Y-H, Chun M-P, Kim B-I (2006) J Ceram Process Res 7:91Google Scholar
  25. 25.
    Jing X, Li Y, Yin Q (2003) Mater Sci Eng B: Solid-State Mater Adv Technol 99:506Google Scholar
  26. 26.
    Hao J, Wang X, Chen R, Li L (2005) Mater Chem Phys 90:282CrossRefGoogle Scholar
  27. 27.
    van Hal HAM, Groen WA, Maassen S, Keur WC (2001) J Eur Ceram Soc 21:1689CrossRefGoogle Scholar
  28. 28.
    Costa AL, Montanari G, Galassi C, Cernea M, Bezzi F, Albonetti S (2006) Adv Eng Mater 8:572CrossRefGoogle Scholar
  29. 29.
    Montanari G, Costa AL, Albonetti S, Galassi C (2005) J Sol-Gel Sci Technol 36:203CrossRefGoogle Scholar
  30. 30.
    Cernea M, Montanari G, Galassi C, Costa AL (2006) Nanotechnology 17:1731CrossRefGoogle Scholar
  31. 31.
    Shea LE, McKittrick J, Lopez OA, Sluzky E (1996) J Am Ceram Soc 79:3257CrossRefGoogle Scholar
  32. 32.
    Cannas C, Musinu A, Peddis D, Piccaluga G (2004) J Nanoparticle Res 6:223CrossRefGoogle Scholar
  33. 33.
    Behera SK, Barpanda P, Pratihar SK, Bhattacharyya S (2004) Mater Lett 58:1451CrossRefGoogle Scholar
  34. 34.
    Guo RS, Wei QT, Li HL, Wang FH (2006) Mater Lett 60:261CrossRefGoogle Scholar
  35. 35.
    Civera A, Pavese M, Saracco G, Specchia V (2003) Catal Today 83:199CrossRefGoogle Scholar
  36. 36.
    Chakrabarti N, Maiti HS (1996) J Mater Chem 6:1169CrossRefGoogle Scholar
  37. 37.
    Music S, Gotic M, Ivanda M, Popovic S, Turkovic A, Trojko R, Sekulic A, Furic K (1997) Mater Sci Eng B-Solid State Mater Adv Technol 47:33Google Scholar
  38. 38.
    Baia L, Stefan R, Kiefer W, Simon S (2005) J Raman Spectrosc 36:262CrossRefGoogle Scholar
  39. 39.
    Sreenivasu D, Chandramouli V (2000) Bull Mater Sci 23:281CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Elisa Mercadelli
    • 1
    • 2
  • Carmen Galassi
    • 1
  • Anna Luisa Costa
    • 1
  • Stefania Albonetti
    • 1
    • 2
  • Alessandra Sanson
    • 1
  1. 1.CNR-ISTECInstitute of Science and Technology for Ceramics, National Research CouncilFaenzaItaly
  2. 2.Department of Industrial Chemistry and MaterialsBologna University BolognaItaly

Personalised recommendations