Journal of Sol-Gel Science and Technology

, Volume 45, Issue 3, pp 237–243 | Cite as

Borate, lithium borate, and borophosphate powders by sol–gel precipitation

Original Paper


Borate, lithium borate and borophosphate powders were synthesized by the sol–gel method. Triethyl borate, lithium methoxide, and orthophosphoric acid were used as precursors for B2O3, Li2O, and P2O5, respectively. Powders were characterized by FTIR, DTA, XRD and SEM techniques. Powders from the Li2O–B2O3 system exhibited glassy features while borate and borophosphate powders contained mainly crystalline B2O3 according to XRD analysis. However, a 500 °C heat treatment transformed these crystalline powders into glass powders. Conversely, heat treatment of Li2O–B2O3 powders transformed their structure from glassy to crystalline (Li2B4O7). Chemical durability studies conducted in water at 60 °C showed that minor additions of P2O5 into borate and lithium borate powders improved their chemical durability significantly. Furthermore, Li2O and P2O5 acted synergistically on the chemical durability when added simultaneously to borate compositions.


Sol–gel Borate Glass P2O5 Chemical durability 


  1. 1.
    Tohge N, Mackenzie JD (1984) J Non-Cryst Sol 68:411CrossRefGoogle Scholar
  2. 2.
    Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego, pp 78–90Google Scholar
  3. 3.
    Kruener G, Frishat GH (1990) J Non-Cryst Sol 121:167CrossRefGoogle Scholar
  4. 4.
    Spierings GACM, Van Hal HAM, Keur WC (1995) J Mater Sci Lett 14:431Google Scholar
  5. 5.
    Chryssikos GD, Patsis AP, Kamitsos EI, Kapoutsis JA, Karakassides MA, Trapalis C, Mylonas E, Kordas G (1995) J Mater Sci Lett 14:268CrossRefGoogle Scholar
  6. 6.
    Lopez T, Bosch P, Asomoza M, Haro-Poniatowski E (1994) J Mater Synth Proc 2:99Google Scholar
  7. 7.
    Medda MP, Musinu A, Piccaluga G, Pinna G (1994) J Mater Sci 29:1330CrossRefGoogle Scholar
  8. 8.
    Dumeignil F, Guelton M, Rigole M, Amoureux J-P, Fernandez C, Grimblot J (1999) Colloids Surf A Physicochem Eng Asp 158:75CrossRefGoogle Scholar
  9. 9.
    Tonooka K, Nishimura O (2000) J Lumin 87/89:679CrossRefGoogle Scholar
  10. 10.
    Weinberg MC, Neilson GF, Smith GL, Dunn B, Moore GS, Mackenzie JD (1985) J Mater Sci 20:1501CrossRefGoogle Scholar
  11. 11.
    De G, Karmakar B, Ganguli D (2000) J Mater Chem 10:2289–2293CrossRefGoogle Scholar
  12. 12.
    Yoldas BE (1979) J Mater Sci 14:1843CrossRefGoogle Scholar
  13. 13.
    Bengisu M, Brow RK, Yilmaz E, Mogus-Milankovic A, Reis ST (2006) J Non-Cryst Sol 352:3668CrossRefGoogle Scholar
  14. 14.
    Li B, Yue Z, Zhou J, Gui Z, Li L (2002) Mater Lett 54:25–29CrossRefGoogle Scholar
  15. 15.
    Pernice P, Esposito S, Aronne A, Sigaev VN (1999) J Non-Cryst Solids 258:1–10CrossRefGoogle Scholar
  16. 16.
    Karabulut M, Metwalli E, Brow RK (2001) J Non-Cryst Solids 283:211–219CrossRefGoogle Scholar
  17. 17.
    Almeida AFL, Thomazini D, Vasconselos IF, Valente MA, Sombrac ASB (2001) Int J Inorg Mater 3:829–838CrossRefGoogle Scholar
  18. 18.
    Metwalli E, Brow RK (2001) J Non-Cryst Solids 289:113–122CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Industrial EngineeringEastern Mediterranean UniversityMersinTurkey
  2. 2.Department of ChemistryEastern Mediterranean UniversityMersinTurkey
  3. 3.Department of Mechanical Engineering Eastern Mediterranean UniversityMersinTurkey
  4. 4.Materials Science Department, 222 McNutt HallUniversity of Missouri-RollaRollaUSA

Personalised recommendations