Journal of Sol-Gel Science and Technology

, Volume 45, Issue 2, pp 179–185 | Cite as

Erbium and ytterbium co-doped SiO2:GeO2 planar waveguide prepared by the sol–gel route using an alternative precursor

  • Fernando A. Sigoli
  • Younes Messaddeq
  • Sidney J. L. Ribeiro
Original Paper


The sol–gel method combined with a spin-coating technique has been successfully applied for the preparation of rare-earth doped silica:germania films used for the fabrication of erbium-doped waveguide amplifiers (EDWA), presenting several advantages over other methods for the preparation of thin films. As with other methods, the sol–gel route also shows some drawbacks, such as cracks related to the thickness of silica films and high hydrolysis rate of certain precursors such as germanium alkoxides. This article describes the preparation and optical characterization of erbium and ytterbium co-doped SiO2:GeO2 crack-free thick films prepared by the sol–gel route combined with a spin-coating technique using a chemically stable non-aqueous germanium oxide solution as an alternative precursor. The non-crystalline films obtained are planar waveguides exhibiting a single mode at 1,550 nm with an average thickness of 3.9 µm presenting low percentages of porosity evaluated by the Lorentz–Lorenz Effective Medium Approximation, and low stress, according to the refractive index values measured in both transversal electric and magnetic polarizations. Weakly confining core layers (0.3% < Δn < 0.75%) were obtained according to the refractive index difference between the core and buffer layers, suggesting that low-loss coupling EDWA may be obtained. The life time of the erbium 4I13/2 metastable state was measured as a function of erbium concentration in different systems and based on these values it is possible to infer that the hydroxyl group was reduced and the formation of rare-earth clusters was avoided.


Silica GeO2 Thin films Amplifiers Rare-earth Sol–gel 



Financial support from FAPESP, CAPES, and CNPq is gratefully acknowledged. The authors would like to thank Professor C. H. Collins (IQ-UNICAMP, Campinas, Brazil) for English revision.


  1. 1.
    Mendoza EA, Kempen LU, Sigoli FA, M. Jordão (2005) 13th International Workshop on Sol–gel Science and Technology—Abstracts and Program, p 437Google Scholar
  2. 2.
    Kik PG, Polman A (1998) MRS Bull 23:48Google Scholar
  3. 3.
    Hattori K, Kitagawa T, Oguma M, Wada M, Temmyo J, Horiguchi M (1993) Electron Lett 29:357CrossRefGoogle Scholar
  4. 4.
    Hattori K, Kitagawa T, Oguma M, Ohmori Y, Horiguchi M (1994) Electron Lett 30:856CrossRefGoogle Scholar
  5. 5.
    Ghosh RN, Shmulovich J, Kane CF, de Barros MRX, Nykolak G, Bruce AJ, Becker PC (1996) IEEE Photonic Technol Lett 8:518CrossRefGoogle Scholar
  6. 6.
    Shmulovich J, Wong A, Wong YH, Becker PC, Bruce AJ, Adar R (1992) Electron Lett 28:1181CrossRefGoogle Scholar
  7. 7.
    van den Hoven GN, Koper RJIM, Polman A, van Dam C, van Uffelen JWM, Smit MK (1996) Appl Phys Lett 68:1886CrossRefGoogle Scholar
  8. 8.
    Yeatman EM, Ahmad MM, McCarthy O, Vannucci A, Gastaldo P, Barbier D, Mongardien D, Moronvalle C (1999) Opt Commun 164:19CrossRefGoogle Scholar
  9. 9.
    Forastiere MA, Pelli S, Righini GC, Guglielmi M, Martucci A, Ahmad MM, McCarty O, Yeatman E, Vannucci A (2000) Fiber Int Opt 20:29CrossRefGoogle Scholar
  10. 10.
    Yan YC, Faber AJ, de Wall H, Kik PG, Polman A (1997) Appl Phys Lett 71:2922CrossRefGoogle Scholar
  11. 11.
    Benatsou M, Bouzaoui B (1997) Opt Commun 134:143CrossRefGoogle Scholar
  12. 12.
    Martucci A, Brusatin G, Guglielmi M, Strohhofer C, Fick J, Pelli S, Righini GC (1998) J Sol–Gel Sci Technol 13:535CrossRefGoogle Scholar
  13. 13.
    Yeatman EM, Pita K, Ahmad MM, Vannuci A, Fiorello A (1998) J Sol–Gel Sci Technol 13:517CrossRefGoogle Scholar
  14. 14.
    Gonçalves RR, Carturan G, Zampedri L, Ferrari M, Montagna M, Chiasera A, Righini GC, Pelli S, Ribeiro SJ, Messaddeq Y (2002) Appl Phys Lett 81:28CrossRefGoogle Scholar
  15. 15.
    Gonçalves RR, Carturan G, Zampedri L, Ferrari M, Chiasera A, Montagna M, Righini GC, Pelli S, Ribeiro SJ, Messaddeq Y (2003) J Non-Cryst Solids 322:306CrossRefGoogle Scholar
  16. 16.
    Gonçalves RR, Carturan G, Montagna M, Ferrari M, Zampedri L, Pelli S, Righini GC, Ribeiro SJ, Messaddeq Y (2004) Opt Mater 25:131CrossRefGoogle Scholar
  17. 17.
    Sigoli FA, Gonçalves RR, Messaddeq Y, Ribeiro SJL (2006) J Non-Cryst Solids 352:3463CrossRefGoogle Scholar
  18. 18.
    Sigoli FA, Gonçalves RR, de Camargo ASS, Nunes LAO, Messaddeq Y, Ribeiro SJL (2007) Opt Mater 30:600CrossRefGoogle Scholar
  19. 19.
    Chen DG, Potter BG, Simmons JH (1994) J Non-Cryst Solids 178:135CrossRefGoogle Scholar
  20. 20.
    Benatsou M, Bouazoui M (1997) Opt Commun 137:143CrossRefGoogle Scholar
  21. 21.
    Simmons KD, Stegeman GI, Potter BG Jr, Simmons JH (1994) J Non-Cryst Solids 179:254CrossRefGoogle Scholar
  22. 22.
    Simmons-Potter K, Simmons JH (1995) Appl Phys Lett 66:2104CrossRefGoogle Scholar
  23. 23.
    Grandi S, Mustarelli P, Magistris A, Gallorini M, Rizzio E (2002) J Non-Cryst Solids 303:208CrossRefGoogle Scholar
  24. 24.
    Hill KO, Fujii Y, Johnson DC, Kawasaki BS (1978) Appl Phys Lett 32:647CrossRefGoogle Scholar
  25. 25.
    Ohwaki T, Takeda M, Takai Y (1997) Jpn J Appl Phys 36:5507CrossRefGoogle Scholar
  26. 26.
    Sloof LH, de Dood MJA, van Blaaderen A, Polman A (2001) J Non-Cryst Solids 296:158CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Fernando A. Sigoli
    • 1
  • Younes Messaddeq
    • 2
  • Sidney J. L. Ribeiro
    • 2
  1. 1.Institute of ChemistryUNICAMPCampinasBrazil
  2. 2.Institute of ChemistryUNESPAraraquaraBrazil

Personalised recommendations