Skip to main content
Log in

Erbium and ytterbium co-doped SiO2:GeO2 planar waveguide prepared by the sol–gel route using an alternative precursor

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The sol–gel method combined with a spin-coating technique has been successfully applied for the preparation of rare-earth doped silica:germania films used for the fabrication of erbium-doped waveguide amplifiers (EDWA), presenting several advantages over other methods for the preparation of thin films. As with other methods, the sol–gel route also shows some drawbacks, such as cracks related to the thickness of silica films and high hydrolysis rate of certain precursors such as germanium alkoxides. This article describes the preparation and optical characterization of erbium and ytterbium co-doped SiO2:GeO2 crack-free thick films prepared by the sol–gel route combined with a spin-coating technique using a chemically stable non-aqueous germanium oxide solution as an alternative precursor. The non-crystalline films obtained are planar waveguides exhibiting a single mode at 1,550 nm with an average thickness of 3.9 µm presenting low percentages of porosity evaluated by the Lorentz–Lorenz Effective Medium Approximation, and low stress, according to the refractive index values measured in both transversal electric and magnetic polarizations. Weakly confining core layers (0.3% < Δn < 0.75%) were obtained according to the refractive index difference between the core and buffer layers, suggesting that low-loss coupling EDWA may be obtained. The life time of the erbium 4I13/2 metastable state was measured as a function of erbium concentration in different systems and based on these values it is possible to infer that the hydroxyl group was reduced and the formation of rare-earth clusters was avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mendoza EA, Kempen LU, Sigoli FA, M. Jordão (2005) 13th International Workshop on Sol–gel Science and Technology—Abstracts and Program, p 437

  2. Kik PG, Polman A (1998) MRS Bull 23:48

    CAS  Google Scholar 

  3. Hattori K, Kitagawa T, Oguma M, Wada M, Temmyo J, Horiguchi M (1993) Electron Lett 29:357

    Article  CAS  Google Scholar 

  4. Hattori K, Kitagawa T, Oguma M, Ohmori Y, Horiguchi M (1994) Electron Lett 30:856

    Article  Google Scholar 

  5. Ghosh RN, Shmulovich J, Kane CF, de Barros MRX, Nykolak G, Bruce AJ, Becker PC (1996) IEEE Photonic Technol Lett 8:518

    Article  Google Scholar 

  6. Shmulovich J, Wong A, Wong YH, Becker PC, Bruce AJ, Adar R (1992) Electron Lett 28:1181

    Article  CAS  Google Scholar 

  7. van den Hoven GN, Koper RJIM, Polman A, van Dam C, van Uffelen JWM, Smit MK (1996) Appl Phys Lett 68:1886

    Article  Google Scholar 

  8. Yeatman EM, Ahmad MM, McCarthy O, Vannucci A, Gastaldo P, Barbier D, Mongardien D, Moronvalle C (1999) Opt Commun 164:19

    Article  CAS  Google Scholar 

  9. Forastiere MA, Pelli S, Righini GC, Guglielmi M, Martucci A, Ahmad MM, McCarty O, Yeatman E, Vannucci A (2000) Fiber Int Opt 20:29

    Article  Google Scholar 

  10. Yan YC, Faber AJ, de Wall H, Kik PG, Polman A (1997) Appl Phys Lett 71:2922

    Article  CAS  Google Scholar 

  11. Benatsou M, Bouzaoui B (1997) Opt Commun 134:143

    Article  Google Scholar 

  12. Martucci A, Brusatin G, Guglielmi M, Strohhofer C, Fick J, Pelli S, Righini GC (1998) J Sol–Gel Sci Technol 13:535

    Article  CAS  Google Scholar 

  13. Yeatman EM, Pita K, Ahmad MM, Vannuci A, Fiorello A (1998) J Sol–Gel Sci Technol 13:517

    Article  CAS  Google Scholar 

  14. Gonçalves RR, Carturan G, Zampedri L, Ferrari M, Montagna M, Chiasera A, Righini GC, Pelli S, Ribeiro SJ, Messaddeq Y (2002) Appl Phys Lett 81:28

    Article  Google Scholar 

  15. Gonçalves RR, Carturan G, Zampedri L, Ferrari M, Chiasera A, Montagna M, Righini GC, Pelli S, Ribeiro SJ, Messaddeq Y (2003) J Non-Cryst Solids 322:306

    Article  Google Scholar 

  16. Gonçalves RR, Carturan G, Montagna M, Ferrari M, Zampedri L, Pelli S, Righini GC, Ribeiro SJ, Messaddeq Y (2004) Opt Mater 25:131

    Article  Google Scholar 

  17. Sigoli FA, Gonçalves RR, Messaddeq Y, Ribeiro SJL (2006) J Non-Cryst Solids 352:3463

    Article  CAS  Google Scholar 

  18. Sigoli FA, Gonçalves RR, de Camargo ASS, Nunes LAO, Messaddeq Y, Ribeiro SJL (2007) Opt Mater 30:600

    Article  CAS  Google Scholar 

  19. Chen DG, Potter BG, Simmons JH (1994) J Non-Cryst Solids 178:135

    Article  CAS  Google Scholar 

  20. Benatsou M, Bouazoui M (1997) Opt Commun 137:143

    Article  CAS  Google Scholar 

  21. Simmons KD, Stegeman GI, Potter BG Jr, Simmons JH (1994) J Non-Cryst Solids 179:254

    Article  CAS  Google Scholar 

  22. Simmons-Potter K, Simmons JH (1995) Appl Phys Lett 66:2104

    Article  CAS  Google Scholar 

  23. Grandi S, Mustarelli P, Magistris A, Gallorini M, Rizzio E (2002) J Non-Cryst Solids 303:208

    Article  CAS  Google Scholar 

  24. Hill KO, Fujii Y, Johnson DC, Kawasaki BS (1978) Appl Phys Lett 32:647

    Article  Google Scholar 

  25. Ohwaki T, Takeda M, Takai Y (1997) Jpn J Appl Phys 36:5507

    Article  CAS  Google Scholar 

  26. Sloof LH, de Dood MJA, van Blaaderen A, Polman A (2001) J Non-Cryst Solids 296:158

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from FAPESP, CAPES, and CNPq is gratefully acknowledged. The authors would like to thank Professor C. H. Collins (IQ-UNICAMP, Campinas, Brazil) for English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando A. Sigoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigoli, F.A., Messaddeq, Y. & Ribeiro, S.J.L. Erbium and ytterbium co-doped SiO2:GeO2 planar waveguide prepared by the sol–gel route using an alternative precursor. J Sol-Gel Sci Technol 45, 179–185 (2008). https://doi.org/10.1007/s10971-007-1667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1667-y

Keywords

Navigation