Advertisement

Journal of Sol-Gel Science and Technology

, Volume 44, Issue 2, pp 111–118 | Cite as

Sol–gel preparation and properties of hydroxypropylcellulose–titania hybrid thin films

  • Mariko Kusabe
  • Hiromitsu Kozuka
  • Satoru Abe
  • Hiroshi Suzuki
Original Paper

Abstract

Hydroxypropylcellulose (HPC)–titania hybrid thin films were prepared by sol–gel method where titanium tetraisopropoxide Ti(OC3H 7 i )4 was hydrolyzed under acidic conditions in the presence of HPC, followed by dip-coating and drying at 120 °C for 24 h. The viscosity average molecular weight of HPC was 55,000–70,000 or 110,000–150,000, and the TiO2/(HPC + TiO2) mass ratio ranged from 0 to 1, which was calculated on the assumption that all Ti(OC3H 7 i )4 is converted into TiO2. The films were 0.35–1.0 μm thick, transparent in visible region and opaque in ultraviolet (UV) region, where the optical absorption coefficient in UV region increased with increasing titania content. The refractive index increased with increasing titania content, ranging from 1.6 to 1.8 for the hybrid thin films. The pencil hardness increased from 6B to 5H, the durability in hot water significantly increased and the contact angle of water on films increased from 35° to 89° with increasing titania content. Crack-free films could be deposited on organic polymer substrates irrespective of titania or HPC contents, where cracking did not occur at higher HPC contents even when the substrate was bent.

Keywords

Sol–gel process Thin films Coating Hydroxypropylcellulose Titania Organic–inorganic hybrids Hardness Wettability Durability UV absorption 

Notes

Acknowledgments

This work is financially supported by the High Technology Research Center of Kansai University.

References

  1. 1.
    Sequeira S, Evtuguin DV, Portugal I, Esculcas AP (2007) Mater Sci Eng C-Biomim Supramol Syst 27:172Google Scholar
  2. 2.
    Ruan D, Huang QL, Zhang LN (2005) Macromol Mater Eng 290:1017CrossRefGoogle Scholar
  3. 3.
    Garvey SJ, Anand SC, Rowe T, Horrocks AR, Walker DG (1996) Polym Degrad Stab 54:413CrossRefGoogle Scholar
  4. 4.
    Neyestanaki AK, Lindfors LE (1994) Combust Sci Technol 97:121CrossRefGoogle Scholar
  5. 5.
    Wojciechowski P, Halamus T, Pietsch U (2006) Mater Sci Poland 24:507Google Scholar
  6. 6.
    Yano S, Iwata K, Kurita K (1998) Mater Sci Eng C-Biomim Supramol Syst 6:75Google Scholar
  7. 7.
    Nagpal VJ, Davis RM, Desu SB (1995) J Mater Res 10:3068Google Scholar
  8. 8.
    Zhao G, Tian Q, Liu Q, Han G (2005) Surf Coat Technol 198:55CrossRefGoogle Scholar
  9. 9.
    Borgo CA, Lazarin AM, Kholin YV, Landers R, Gushikem Y (2004) J Brazilian Chem Soc 15:50Google Scholar
  10. 10.
    Kelley SS, Filley J, Greenberg AR, Peterson P, Krantz WB (2002) Int J Polym Anal Character 7:162CrossRefGoogle Scholar
  11. 11.
    Lazarin AM, Gushikem Y (2002) J Brazilian Chem Soc 13:88Google Scholar
  12. 12.
    Shojaie SS, Rials TG, Kelley SS (1996) J Appl Polym Sci 6:151Google Scholar
  13. 13.
    Yoshinaga I, Katayama S (1996) J Sol–Gel Sci Technol 6:151CrossRefGoogle Scholar
  14. 14.
    Ravirajan P, Bradley DDC, Nelson J, Haque SA, Durrant JR, Smit HJP, Kroon JM (2005) Appl Phys Lett 86:143101CrossRefGoogle Scholar
  15. 15.
    Xiong MN, Zhou SX, You B, Wu LM (2005) J Polym Sci Part B Polym Phys 43:63CrossRefGoogle Scholar
  16. 16.
    Agag T, Tsuchiya H, Takeichi T (2004) Polymer 45:7903CrossRefGoogle Scholar
  17. 17.
    Schnitzler DC, Zarbin AJG (2004) J Brazilian Chem Soc 15:378Google Scholar
  18. 18.
    Strohm H, Sgraja M, Bertling J, Lobmann P (2003) J Mater Sci 38:1605CrossRefGoogle Scholar
  19. 19.
    Kwak SY, KimSH, Kim SS (2001) Environ Sci Technol 35:2388CrossRefGoogle Scholar
  20. 20.
    Ding HM, Ram MK, Nicolini C (2002) J Mater Chem 12:3585CrossRefGoogle Scholar
  21. 21.
    Ding HM, Ram MK, Nicolini C (2001) J Nanosci Nanotechnol 1:207CrossRefGoogle Scholar
  22. 22.
    Ahmad Z, Sarwar MI, Wang S, Mark JE (1997) Polymer 38:4523CrossRefGoogle Scholar
  23. 23.
    Almeida RM, Marques AC (1994) In: Sakka S (ed) Handbook of sol–gel science and technology: processing and characterization and applications, vol II. Kluwer Academic Publishers, Boston, p 81Google Scholar
  24. 24.
    Colthup NB, Daly LH, Wiberly SE (1990) Introduction to infrared and raman spectroscopy, 3rd edn. Academic Press, San DiegoGoogle Scholar
  25. 25.
    Cabana A, Aït-Kadi A, Juhász J (1997) J Colloid Interf Sci 190:307CrossRefGoogle Scholar
  26. 26.
    Stoyanov ES, Reed CA (2004) J Phys Chem A 108:907CrossRefGoogle Scholar
  27. 27.
    Derosa RL, Trapasso JA (2002) J Mater Sci 37:1079CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mariko Kusabe
    • 1
  • Hiromitsu Kozuka
    • 1
  • Satoru Abe
    • 2
  • Hiroshi Suzuki
    • 2
  1. 1.Department of Materials Science and EngineeringKansai UniversitySuitaJapan
  2. 2.R & D Laboratory for High-Performance MaterialsNippon Soda Co., LtdIchiharaJapan

Personalised recommendations