Skip to main content
Log in

Sol–gel preparation and properties of hydroxypropylcellulose–titania hybrid thin films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hydroxypropylcellulose (HPC)–titania hybrid thin films were prepared by sol–gel method where titanium tetraisopropoxide Ti(OC3H i7 )4 was hydrolyzed under acidic conditions in the presence of HPC, followed by dip-coating and drying at 120 °C for 24 h. The viscosity average molecular weight of HPC was 55,000–70,000 or 110,000–150,000, and the TiO2/(HPC + TiO2) mass ratio ranged from 0 to 1, which was calculated on the assumption that all Ti(OC3H i7 )4 is converted into TiO2. The films were 0.35–1.0 μm thick, transparent in visible region and opaque in ultraviolet (UV) region, where the optical absorption coefficient in UV region increased with increasing titania content. The refractive index increased with increasing titania content, ranging from 1.6 to 1.8 for the hybrid thin films. The pencil hardness increased from 6B to 5H, the durability in hot water significantly increased and the contact angle of water on films increased from 35° to 89° with increasing titania content. Crack-free films could be deposited on organic polymer substrates irrespective of titania or HPC contents, where cracking did not occur at higher HPC contents even when the substrate was bent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sequeira S, Evtuguin DV, Portugal I, Esculcas AP (2007) Mater Sci Eng C-Biomim Supramol Syst 27:172

    CAS  Google Scholar 

  2. Ruan D, Huang QL, Zhang LN (2005) Macromol Mater Eng 290:1017

    Article  CAS  Google Scholar 

  3. Garvey SJ, Anand SC, Rowe T, Horrocks AR, Walker DG (1996) Polym Degrad Stab 54:413

    Article  CAS  Google Scholar 

  4. Neyestanaki AK, Lindfors LE (1994) Combust Sci Technol 97:121

    Article  CAS  Google Scholar 

  5. Wojciechowski P, Halamus T, Pietsch U (2006) Mater Sci Poland 24:507

    CAS  Google Scholar 

  6. Yano S, Iwata K, Kurita K (1998) Mater Sci Eng C-Biomim Supramol Syst 6:75

    Google Scholar 

  7. Nagpal VJ, Davis RM, Desu SB (1995) J Mater Res 10:3068

    CAS  Google Scholar 

  8. Zhao G, Tian Q, Liu Q, Han G (2005) Surf Coat Technol 198:55

    Article  CAS  Google Scholar 

  9. Borgo CA, Lazarin AM, Kholin YV, Landers R, Gushikem Y (2004) J Brazilian Chem Soc 15:50

    CAS  Google Scholar 

  10. Kelley SS, Filley J, Greenberg AR, Peterson P, Krantz WB (2002) Int J Polym Anal Character 7:162

    Article  CAS  Google Scholar 

  11. Lazarin AM, Gushikem Y (2002) J Brazilian Chem Soc 13:88

    CAS  Google Scholar 

  12. Shojaie SS, Rials TG, Kelley SS (1996) J Appl Polym Sci 6:151

    Google Scholar 

  13. Yoshinaga I, Katayama S (1996) J Sol–Gel Sci Technol 6:151

    Article  CAS  Google Scholar 

  14. Ravirajan P, Bradley DDC, Nelson J, Haque SA, Durrant JR, Smit HJP, Kroon JM (2005) Appl Phys Lett 86:143101

    Article  Google Scholar 

  15. Xiong MN, Zhou SX, You B, Wu LM (2005) J Polym Sci Part B Polym Phys 43:63

    Article  Google Scholar 

  16. Agag T, Tsuchiya H, Takeichi T (2004) Polymer 45:7903

    Article  CAS  Google Scholar 

  17. Schnitzler DC, Zarbin AJG (2004) J Brazilian Chem Soc 15:378

    CAS  Google Scholar 

  18. Strohm H, Sgraja M, Bertling J, Lobmann P (2003) J Mater Sci 38:1605

    Article  CAS  Google Scholar 

  19. Kwak SY, KimSH, Kim SS (2001) Environ Sci Technol 35:2388

    Article  CAS  Google Scholar 

  20. Ding HM, Ram MK, Nicolini C (2002) J Mater Chem 12:3585

    Article  CAS  Google Scholar 

  21. Ding HM, Ram MK, Nicolini C (2001) J Nanosci Nanotechnol 1:207

    Article  CAS  Google Scholar 

  22. Ahmad Z, Sarwar MI, Wang S, Mark JE (1997) Polymer 38:4523

    Article  CAS  Google Scholar 

  23. Almeida RM, Marques AC (1994) In: Sakka S (ed) Handbook of sol–gel science and technology: processing and characterization and applications, vol II. Kluwer Academic Publishers, Boston, p 81

    Google Scholar 

  24. Colthup NB, Daly LH, Wiberly SE (1990) Introduction to infrared and raman spectroscopy, 3rd edn. Academic Press, San Diego

    Google Scholar 

  25. Cabana A, Aït-Kadi A, Juhász J (1997) J Colloid Interf Sci 190:307

    Article  CAS  Google Scholar 

  26. Stoyanov ES, Reed CA (2004) J Phys Chem A 108:907

    Article  CAS  Google Scholar 

  27. Derosa RL, Trapasso JA (2002) J Mater Sci 37:1079

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the High Technology Research Center of Kansai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromitsu Kozuka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusabe, M., Kozuka, H., Abe, S. et al. Sol–gel preparation and properties of hydroxypropylcellulose–titania hybrid thin films. J Sol-Gel Sci Technol 44, 111–118 (2007). https://doi.org/10.1007/s10971-007-1607-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1607-x

Keywords

Navigation