Skip to main content
Log in

Strength and elasticity of bimodal porous silica prepared from water glass

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The bending strength and the Young’s modulus of bimodal porous silica gels having different porosity were evaluated. The porosity of the gel increased by aging the gel under basic conditions, and decreased with increasing the calcination temperature. The mesopores disappeared on calcination at 1,050 °C, whereas continuous macropores retained their morphology up to 1,050 °C for all the samples. Both the bending strength and the Young’s modulus of the bimodal porous silica gels were expressed as power-law functions of the bulk density, and no effect of bimodal pore structures on mechanical properties was observed. We also found linear correlation between the bending strength and the elasticity. The bimodal porous silica had higher strength and elastic modulus compared with other porous materials at the same porosity probably due to the presence of homogeneous micrometer-scale macropores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nakanishi K, Soga N (1991) J Am Ceram Soc 74:2518

    Article  CAS  Google Scholar 

  2. Nakanishi K (1997) J Porous Mater 4:67

    Article  CAS  Google Scholar 

  3. Takahashi R, Sato S, Sodesawa T, Haga A, Nishino H (2004) J Ceram Soc Japan 112:99

    Article  CAS  Google Scholar 

  4. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1996) Anal Chem 68:3498

    Article  CAS  Google Scholar 

  5. Nakamura N, Takahashi R, Sato S, Sodesawa T, Yoshida S (2000) Phys Chem Chem Phys 2:4983

    Article  CAS  Google Scholar 

  6. Takahashi R, Sato S, Sodesawa T, Yachi A (2001) J Ceram Soc Japan 109:577

    CAS  Google Scholar 

  7. Martin J, Hosticka B, Lattimer C, Norris PM (2001) J Non-Cryst Solids 285:222

    Article  CAS  Google Scholar 

  8. Coble RL, Kingery WD (1956) J Am Ceram Soc 39:377

    Article  Google Scholar 

  9. Mercier F, Kolenda F, Puiggali JR (2002) Chem Eng J 86:95

    Article  CAS  Google Scholar 

  10. Isobe T, Tomita T, Kameshima Y, Nakajima A, Okada K (2006) J Euro Ceram Soc 26:957

    Article  CAS  Google Scholar 

  11. Spriggs RM, Vasilos T (1963) J Am Ceram Soc 46:224

    Article  CAS  Google Scholar 

  12. Ryshkrwitch E (1953) J Am Ceram Soc 36:65

    Article  Google Scholar 

  13. Fryxell RE, Chandler BA (1964) J Am Ceram Soc 47:283

    Article  CAS  Google Scholar 

  14. Knudsen FP (1959) J Am Ceram Soc 42:376

    Article  CAS  Google Scholar 

  15. Colombo P, Hellmann JR, Shelleman DL (2001) J Am Ceram Soc 84:2245

    Article  CAS  Google Scholar 

  16. Studt PL, Fulrath RM (1962) J Am Ceram Soc 45:182

    Article  CAS  Google Scholar 

  17. Huec JCL, Schaeverbeke T, Clement D, Faber J, Rebeller AL (1995) Biomaterials 16:113

    Article  Google Scholar 

  18. Girona MM, Martinez E, Roig A, Esteve J, Mokins E (2001) J Non-Cryst Solids 285:244

    Article  Google Scholar 

  19. Woignier T, Phalippou J, Hdach H, Larnac G, Pernot F, Scherer G (1992) J Non-Cryst Solids 147&148:672

    Article  Google Scholar 

  20. Woignier T, Reynes J, Hafidi Alaoui A, Beurroies I, Phalippou J (1998) J Non-Cryst Solids 241:45

    Article  CAS  Google Scholar 

  21. Gross J, Fricke J (1995) Nanostruct Mater 6:905

    Article  Google Scholar 

  22. Pekara R, Alviso C, Lu X, Gross J, Fricke J (1995) J Non-Cryst Solids 188:34

    Article  Google Scholar 

  23. Scherer G (1997) J Non-Cryst Solids 215:155

    Article  CAS  Google Scholar 

  24. Takahashi R, Sato S, Sodesawa T, Goto T, Matsutani K, Mikami N (2005) Mater Res Bull 40:1148

    Article  CAS  Google Scholar 

  25. Takahashi R, Sato S, Sodesawa T, Goto T, Matsutani K, Mikami N (2007) Mater Res Bull 42:523

    Article  CAS  Google Scholar 

  26. Yachi A, Takahashi R, Sato S, Sodesawa T, Matsutani K, Mikami N (2005) J Non-Cryst Solids 351:331

    Article  CAS  Google Scholar 

  27. Takahashi R, Nakanishi K, Soga N (1995) Faraday Discuss 101:249

    Article  CAS  Google Scholar 

  28. Duckworth W (1953) J Am Ceram Soc 36:68

    Article  Google Scholar 

  29. Kingery W, Bowen H, Uhlmann D (1976) Introduction to ceramics, 2nd edn. John Wiley and Sons, New York

    Google Scholar 

  30. Zou X, Toratani H (2001) J Non-Cryst Solids 290:180

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Industrial Research Grant Program in 04A25503c from New Energy and Industrial Technology Development Organization (NEDO) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoji Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinozaki, N., Takahashi, R., Sato, S. et al. Strength and elasticity of bimodal porous silica prepared from water glass. J Sol-Gel Sci Technol 43, 275–282 (2007). https://doi.org/10.1007/s10971-007-1589-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1589-8

Keywords

Navigation