Journal of Sol-Gel Science and Technology

, Volume 42, Issue 3, pp 369–373 | Cite as

Phase transformation behavior of (Pb,La)(Zr,Sn,Ti)O3 and Pb (Nb,Zr,Sn,Ti)O3 antiferroelectric thin films deposited on LaNiO3-buffered silicon substrates by sol-gel processing

  • Jiwei Zhai
  • Bo Shen
  • Xi Yao
  • Zhengkui Xu
  • Xin Li
  • Haydn Chen


Antiferroelectric (Pb,La)(Zr,Sn,Ti)O3 (PLZST) and Pb(Nb,Zr,Sn,Ti)O3 (PNZST) thin films have been fabricated on LaNiO3/Pt/Ti/SiO2/Si substrates by a sol-gel processing. These films showed highly preferred (100) orientation due to the grain-on-grain local epitaxial growth. The PLZST films close to the AFE-FE phase boundary showed the electric-field-induced ferroelectric (FE) state, which could return back to its original AFE state only when the thermal activation was high enough. The AFE to FE phase transformation in PNZST films can be adjusted by the dc bias field in temperature. Phase transformation behavior of PNZST and PLZST antiferroelectric thin films were investigated as a function of temperature and dc bias field.


Antiferroelectric Thin film Sol-gel process Electrical property Phase transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yamakawa K, Trolier-Mckinstry S, Dougherty JP, Krupanidhi SB (1995) Appl Phys Lett 67:2014CrossRefGoogle Scholar
  2. 2.
    Seveno R, Gundel HW, Seifert S (2001) Appl Phys Lett 79:4204CrossRefGoogle Scholar
  3. 3.
    Xu B, Moses P, Pai NG, Cross LE (1998) Appl Phys Lett 72:593CrossRefGoogle Scholar
  4. 4.
    Jang JH, Yoon KH, Shin HJ (1998) Appl Phys Lett 73:1823CrossRefGoogle Scholar
  5. 5.
    Xu B, Ye Y, Cross LE (2000) J Appl Phys 87:2507CrossRefGoogle Scholar
  6. 6.
    Xu B, Cross LE, Bernstein JJ (2000) Thin Sol Films 377:712CrossRefGoogle Scholar
  7. 7.
    Zhai J, Cheung MH, Xu ZK, Li X, Chen H, Colla EV, Wu TB (2002) Appl Phys Lett 81:3621CrossRefGoogle Scholar
  8. 8.
    Zhai J, Li X, Yao Y, Chen Haydn (2003) Mater Sci Engng B 99:230CrossRefGoogle Scholar
  9. 9.
    Park S-E, Pan M-J, Markowski K (1997) J Appl Phys 82:1798CrossRefGoogle Scholar
  10. 10.
    Lee HY, Wu TB (1998) J Mater Res 13:2291Google Scholar
  11. 11.
    Bharadwaja SSN, Krupanidhi SB (1999) J Appl Phys 86:5862CrossRefGoogle Scholar
  12. 12.
    Pertsev NA, Zembilgotov AG, Tagantsev AK (1998) Phys Rev Lett 80:1988CrossRefGoogle Scholar
  13. 13.
    Lee JJ, Thio CL, Desu SB (1995) J Appl Phys 78:5073CrossRefGoogle Scholar
  14. 14.
    Zhai J, Yao Y, Li X, Hung TF, Xu ZK, Chen H, Colla EV, Wu TB (2002) J Appl Phys 92(7):3990–3994CrossRefGoogle Scholar
  15. 15.
    Tani T, Li JF, Viehland D, Payne DA (1994) J Appl Phys 75:3017CrossRefGoogle Scholar
  16. 16.
    Samara GA (1970) Phys Rev B 1:3777CrossRefGoogle Scholar
  17. 17.
    Ujma Z, Handerek J, Pisarski M (1985) Ferroelectrics 64:237Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  • Jiwei Zhai
    • 1
  • Bo Shen
    • 1
  • Xi Yao
    • 1
  • Zhengkui Xu
    • 2
  • Xin Li
    • 2
  • Haydn Chen
    • 2
  1. 1.Functional Materials Research LaboratoryTongji UniversityShanghaiChina
  2. 2.Department of Physics and Materials ScienceCity University of Hong KongKowloonHong Kong

Personalised recommendations