Advertisement

Journal of Sol-Gel Science and Technology

, Volume 42, Issue 3, pp 323–329 | Cite as

Sol-gel based synthesis of complex oxide nanofibers

  • Junhan Yuh
  • Louis Perez
  • Wolfgang M. Sigmund
  • Juan C. Nino
Article

Abstract

Electrospinning is a versatile and straight forward process for synthesizing one-dimensional (1D) nanostructures of diverse materials. Recently, a large variety of oxide ceramics have been synthesized in combination with conventional sol-gel processing. Here, the synthesis of BaTiO3 nanofibers via electrospinning is reported. The structural evolution from amorphous to crystalline is presented under various heat treatment conditions. Nanofibers with well-defined perovskite tetragonal phase were achieved with an average crystallite size of about 20 nm. Furthermore, single crystalline BaTiO3 nanofibers with 50 nm in diameter and lengths up to 1 μm were found, which is a novelty in electrospinning of ferroelectrics. XRD peak splitting confirmed the tetragonal perovskite structure, and this was fully supported by further evidence from selected area electron diffraction and Raman spectroscopy.

Keywords

Sol-gel Electrospinning Complex ceramic oxide Barium titanate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rao CNR, Govindaraj A, Gundiah G, Vivekchand SRC (2004) Chem Eng Sci 59:4665CrossRefGoogle Scholar
  2. 2.
    Luo Y, Szafraniak I, Zakharov ND, Nagarajan V, Steinhart M, Wehrspohn RB, Wendorff JH, Ramesh R, Alexe M (2003) Appl Phys Lett 83:440CrossRefGoogle Scholar
  3. 3.
    Martin CR (1994) Science 266:1961CrossRefGoogle Scholar
  4. 4.
    Morales AM, Lieber CM (1998) Science 279:208CrossRefGoogle Scholar
  5. 5.
    Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino JC (2006) J Am Ceram Soc 89:395CrossRefGoogle Scholar
  6. 6.
    Li D, Wang Y, Xia Y (2003) Nano Lett 3:1167CrossRefGoogle Scholar
  7. 7.
    Yuh J, Nino JC, Sigmund WM (2005) Mater Lett 59:3645CrossRefGoogle Scholar
  8. 8.
    Wang Y, Furlan R, Ramos I, Santiago-Aviles JJ (2004) Appl Phys A 78:1043CrossRefGoogle Scholar
  9. 9.
    Maensiri S, Nuansing W, Klinkaewnarong J, Laokul P, Khemprasit J (2006) J Colloid Interface Sci 297:578CrossRefGoogle Scholar
  10. 10.
    Kim N, Ko D, Seo Y, Lee W (2006) Thin Solid films 504:261CrossRefGoogle Scholar
  11. 11.
    Yoon D, Roh J, Lee S, Baik H (2003) Prog Mater Sci 48:275CrossRefGoogle Scholar
  12. 12.
    Kim H, Kim H (2006) J Nanosci Nanotechnol 6:505CrossRefGoogle Scholar
  13. 13.
    Kumar S, Messing GL, White WB (1993) J Am Ceram Soc 76:617CrossRefGoogle Scholar
  14. 14.
    Noma T, Wada S, Yano M, Suzuki T (1996) J Appl Phys 80:5223CrossRefGoogle Scholar
  15. 15.
    Durán P, Gutierrez D, Tartaj J, Bañares M, Moure C (2002) J Eur Cer Soc 22:797CrossRefGoogle Scholar
  16. 16.
    Eror NG, Loehr TM, Cornilsen BC (1980) Ferroelectrics 28:321Google Scholar
  17. 17.
    Cho W, Hamada E (1998) J Alloy Compd 266:118CrossRefGoogle Scholar
  18. 18.
    Cho W, Hamada E (1998) J Alloy Compd 268:78CrossRefGoogle Scholar
  19. 19.
    Cho W (1998) J Phys Chem Solids 59:659CrossRefGoogle Scholar
  20. 20.
    Zhang WF, He YL, Zhang MS, Yin Z, Chen Q (2000) J Phys D: Appl Phys 33:912CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  • Junhan Yuh
    • 1
  • Louis Perez
    • 1
  • Wolfgang M. Sigmund
    • 1
  • Juan C. Nino
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations