Skip to main content
Log in

Chemical communication between solids placed at distance: Sol-gel entrapped acids and bases

  • Hybrids and Biological Materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Chemical reactions between “far-away” components are quite common in the living world and in geological processes, and are affected by communicating shuttling molecules and ions. Surprisingly, there has been little attention in the chemical literature to model these natural processes by bench-laboratory heterogeneous reactions. Towards that goal we report the study of chemical communication between solid acids and bases placed at distance. The porous solids were prepared by entrapping various acids and bases in silica sol-gel matrices. We recall that while, of course, dissolved acids and bases titrate each other, when solid acids and bases are placed in the same pot, titration can be affected only through an ion-exchange process. This property is used here to cause the two distantly placed solids to communicate with each other. In particular, we use here the entrapped acids as senders of messenger-hydronium ions and as receivers of hydroxyl ions, and entrapped bases as senders of messenger-hydroxyls. We demonstrate the possibility to control the parameters of the communication between these solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hahn ME, Simmel EC (1976) Communicative behavior and evolution, Ch 2. Academic Press, New York, San Francisco, London, pp 23–37

    Google Scholar 

  2. Johnston JW, Moulton DG, Turk A (1970) Communication by chemical signals, vol. 1. Appleton-Century-Crofts, Meredith Corporation, New York, pp 108–111

    Google Scholar 

  3. Owings DH, Beecher MD, Thompson NS (1997) Perspectives in Ethology, Ch 1. Plenum Press, New York, pp 7–53

    Google Scholar 

  4. Elderfield H, Wheat CG, Mottl MJ, Monnin C, Spiro B (1999) Earth Planetary Sci Lett 172:151

    Article  CAS  Google Scholar 

  5. Backstrom M, Karlsson S, Backman L, Folkeson L, Lind B (2004) Water Research 38:720

    Article  CAS  Google Scholar 

  6. Schlegel ML, Manceau A, Chateigner D, Charlet L (1999) J Colloid Interface Sci 215:140

    Article  CAS  Google Scholar 

  7. Fireman-Shoresh S, Hüsing N, Avnir D (2001) Langmuir 17:5958

    Article  CAS  Google Scholar 

  8. Avnir D, Klein LC, Levy D, Shubert U, Wojcik AB (1998) In: Rappoport Z, Apeloig Y (eds) The chemistry of organosilicon compounds, Ch 40, vol. 2. Wiley & Sons, Chichester, pp 2317–2371

    Google Scholar 

  9. Levy D, Kuyavskaya BI, Zamir I, Ottolenghi M, Avnir D, Lev O (1992) Separat Sci Tech 27:589

    Google Scholar 

  10. Brinker JC, Scherer GW (1990) Sol-gel science: The physics and the chemistry of sol-gel processing, Ch 3. Academic Press, San Diego, pp 97–228

    Google Scholar 

  11. Hench LL, West JK (1990) Chem Rev 90(1):33

    Article  CAS  Google Scholar 

  12. Gelman F, Blum J, Avnir D (2001) Angew Chem Int 40:3647

    Article  CAS  Google Scholar 

  13. Gelman F, Blum J, Schumann H, Avnir D (2003) J Sol-Gel Sci Tech 26:43

    Article  CAS  Google Scholar 

  14. The structures: a. Methyl red b. Bromocresol Purple, Bishop E (1972) Indicators, Pergamon Press Ltd., Headington Hill Hall, Oxford, pp 81–83, 106,

  15. Harmer M, Farneth W, Sun Q (1996) J Am Chem Soc 118:7708

    Article  CAS  Google Scholar 

  16. Rottman C, Grader G, De-Hazan Y, Malchior S, Avnir D (1999) J Am Chem Soc 121(37):8533

    Article  CAS  Google Scholar 

  17. Hüsing N, Schubert U, Misof K, Fratzl P (1998) Chem Mater 10:3024

    Article  Google Scholar 

  18. Hüsing N, Schubert U, Mezei R, Fratzl P, Riegel B, Kiefer W, Kohler D, Mader W (1999) Chem Mater 11:451

    Article  Google Scholar 

  19. Gelman F, Blum J, Avnir D (2000) J Am Chem Soc 122:11999

    Article  CAS  Google Scholar 

  20. The salts which were tested are: LiCl, NH4Cl, FeCl3×6H2O, KNO3, KIO3, KCl, NaI, NaBr, NiSO4, Na3C6H5O7×2H2O, CH3(CH2)11OSO3Na, CH3C6H4SO3Na, NH4CH3COO, K3Fe(CN)6, KSCN, NaNO3, NaCl, Li2SO4, K2SO4, KH2PO4, Na2HPO4, Li2CO3, NaIO3, MgSO4, Na2SO4

  21. Kogan A, Avnir D (2003) Chemical communication between solids placed at distance, M.Sc. thesis, The Institute of Chemistry, The Hebrew University of Jerusalem, Israel

    Google Scholar 

  22. Koone ND, Zerda TW (1997) J Sol-Gel Sci Tech 8:883

    CAS  Google Scholar 

  23. Agmon N (1995) J Molec Liq 64:161

    Article  CAS  Google Scholar 

  24. Robinson RA, Stokes RH (1959) Electrolyte solutions, 2nd edn. Butterworth & Co. Ltd., London, p 463

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Avnir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogan, A., Avnir, D. Chemical communication between solids placed at distance: Sol-gel entrapped acids and bases. J Sol-Gel Sci Technol 40, 233–239 (2006). https://doi.org/10.1007/s10971-006-9207-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-9207-8

Keywords

Navigation