Advertisement

Journal of Sol-Gel Science and Technology

, Volume 42, Issue 3, pp 257–263 | Cite as

UV assisted pyrolysis of solution deposited BiFeO3 multiferroic thin films. Effects on microstructure and functional properties

  • S. Habouti
  • C.-H. Solterbeck
  • M. Es-Souni
Article

Abstract

BiFeO3 thin films were processed on platinized silicon substrate via chemical solution deposition. Short wave UV assisted pyrolysis was conducted in oxygen atmosphere in order to obtain a fine and homogeneous grain structure. Phase pure thin films with a pronounced (100) texture were obtained at a fairly low annealing temperature of 600°C. For comparison specimens processed without UV assisted pyrolysis were also investigated. It is shown that UV assisted pyrolysis leads to a substantial improvement of leakage resistance properties. Polarization switching could also be obtained using capacitance-voltage (C-V) curves. The leakage current was investigated as a function of temperature. Interpretation in terms of Frenkel-Poole mechanism leads to a high trap depth in the range of 2.4 eV which is attributed to the creation of Fe2+ centres. For both microstructures investigated well saturated magnetization loops were obtained with a remnant magnetization of 2Mr = 5.4 emu/cm3 and a coercive fields in the range of 2Hc = 200 Oe. Slightly higher saturation magnetization 2Ms of 55.4 emu/cm3 was obtained for UV assisted pyrolysis in comparison to 45.8 emu/cm3 for the thin films processed without UV.

Keywords

Multiferroic BiFeO3 Dielectric properties Ferroelectric properties Leakage current Magnetic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roginskaya YE, Venevtsev YN, Fedulov SA, Zhdanov GS (1964) Sov Phys Crystallogr 8:490Google Scholar
  2. 2.
    Kiselev SV, Kshnyakina AN, Ozerov RP, Zhdanov GS (1964) Sov Phys Solid State 5:2425Google Scholar
  3. 3.
    Kubel F, Schmid H (1990) Acta Cryst B46:698Google Scholar
  4. 4.
    Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Science 299:1719CrossRefGoogle Scholar
  5. 5.
    Yang SJ, Zavaliche F, Mohaddes-Ardabili L, Vaithyanathan V, Schlom G, Lee YJ, Chu YH, Cruz MP, Zhan Q, Zhao T, Ramesh R (2005) Appl Phys Lett 87:102903CrossRefGoogle Scholar
  6. 6.
    Lee Y-H, Wu J-M, Chueh Y-L, Chou L-J (2005) Appl Phys Lett 87:172901CrossRefGoogle Scholar
  7. 7.
    Tyholdt F, Jørgensen S, Fjellvåg H, Gunnæs AE (2005) J Mater Res 20:2127CrossRefGoogle Scholar
  8. 8.
    Uchida H, Ueno R, Nakaki H, Funakubo H, Koda S (2005) Jpn J Appl Phys 44:L561CrossRefGoogle Scholar
  9. 9.
    Singh SK, Ishiwara H (2005) Jpn J Appl Phys 44:L734CrossRefGoogle Scholar
  10. 10.
    Singh SK, Ueno R, Funakubo H, Uchida H, Koda S, Ishiwara H (2005) Jpn J Appl Phys 44:8525CrossRefGoogle Scholar
  11. 11.
    Iakovlev S, Solterbeck C-H, Kuhnke M, Es-Souni M (2005) J Appl Phys 97:094901CrossRefGoogle Scholar
  12. 12.
    Qi X, Dho J, Tomov R, Blamire MG, MacManus-Driscoll J-L (2005) Appl Phys Lett 86:062903CrossRefGoogle Scholar
  13. 13.
    Yakovlev S, Zekonyte J, Solterbeck C-H, Es-Souni M (2005) Thin Solid Films 493:24CrossRefGoogle Scholar
  14. 14.
    Yun KY, Noda M, Okuyama M, Saeki H, Tabata H, Saito K (2004) J Appl Phys 96:3399CrossRefGoogle Scholar
  15. 15.
    Chang SJ, Lee JS, Wei MC, Chen JF, Liu CH, Liaw UH (2002) J Vac Sci Technol A20:107Google Scholar
  16. 16.
    Calzada ML, Bretos I, Jimenez R, Guillon H, Pardo L (2004) Adv Mater 16:1620CrossRefGoogle Scholar
  17. 17.
    Habouti S, Solterbeck C-H, Es-Souni M (2006) Appl Phys Lett in pressGoogle Scholar
  18. 18.
    Lotgering FK (1959) J Inorganic Nuclear Chem 9:113CrossRefGoogle Scholar
  19. 19.
    Kumar SR, Habouti S, Zaporojtchenko V, Es-Souni M (2006) J Sol-Gel Sci Tech, in pressGoogle Scholar
  20. 20.
    Chen S-Y, Chen I-Wei (1998) J Am Ceram Soc 81:97CrossRefGoogle Scholar
  21. 21.
    Fé L, Norga GJ, Wouters DJ, Maes HE, Maes G (2001) J Mater Res 16:2499Google Scholar
  22. 22.
    Yun KY, Noda M, Okuyama M, Saeki H, Tabata H (2004) In: Hoffmann-Eifert Susanne, Funakubo H, Joshi V, Kingon AI, Koutsaroff IvoP (eds) Ferroelectric thin films XII. Materials Research Society, Pittsburgh, C11.52.1Google Scholar
  23. 23.
    Makoed II, Danil kevich MI (1998) Inorg Mater 34:737Google Scholar
  24. 24.
    Kwan CK (2004) Dielectric phenomena in solids. Elsevier Academic Press, LondonGoogle Scholar
  25. 25.
    Hiboux S, Muralt P, Maeder T (1999) J Mater Res 14:4307Google Scholar
  26. 26.
    Es-Souni M, Piorra A, Solterbeck C-H, Iakovlev S, Abed M (2002) J Electroceram 9:125CrossRefGoogle Scholar
  27. 27.
    Al-Shareef HN, Kingon D (1997) J Am Ceram Soc 80:3127CrossRefGoogle Scholar
  28. 28.
    Wang YP, Zhou L, Zhang MF, Chen XY, Liu JM, Liu ZG (2004) Appl Phys Lett 84:1731CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Institute for Materials and Surface Technology (IMST)Kiel University of Applied SciencesKielGermany

Personalised recommendations