Journal of Sol-Gel Science and Technology

, Volume 33, Issue 3, pp 307–314 | Cite as

The Synthesis of Lead-Free Ferroelectric Bi1/2Na1/2TiO3 Thin Film by Solution-Sol–Gel Method

  • Chang-Yeoul Kim
  • Tohru Sekino
  • Yo Yamamoto
  • Koichi Niihara


Bi1/2Na1/2TiO3 (described as BNT) is considered as a promising lead-free ferroelectric material. In this study, BNT sol was synthesized by mixing bismuth oxide and sodium carbonate dissolved in nitric acid and titanium tetraisopropoxide in ethylene glycol, which was called a solution-sol–gel method and very cost-effective synthesis method, while very high-cost metal alkoxides are used as precursors in conventional sol–gel method. FT-IR and Raman analyses indicated that the chemical modification of titanium tetraisopropoxide by glycolic acid or oxalic acid occurred and the synthesis of stable BNT sol was possible. In the results of high temperature X-ray analysis and DTA/TG analyses, the crystallization of BNT was thought to occur at between 500 and 700∘C following the evaporation of solvent and organics and poly-condensation processes. The main crystal phase of the film was identified as rhombohedral crystal phase of Bi1/2Na1/2TiO3 by XRD and Raman spectroscopy analyses, although a small amount of Bi4Ti3O12 existed as a second phase.

Key words

lead-free ferroelectric solution-sol–gel chemical modification crystallization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.S. Smolensky, V.A. Isupov, A.I. Agranovskaya, and N.N. Krainik, Soviet Physics-Solid State 2, 2651 (1961).Google Scholar
  2. 2.
    Tadashi Takenaka, Kei-ichi Maruyama, and Koichiro Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991).Google Scholar
  3. 3.
    Seung-Eek Park and Su-Jin Chung, J. Am. Ceram. Soc. 77, 2641 (1994).Google Scholar
  4. 4.
    A.N. Soukhojak, H. Wang, G.W. Farrey, and Y.-M. Chiang, J. Phys. Chem. Solids 61, 301 (2000).Google Scholar
  5. 5.
    Y. Yamada, T. Akutsu, H. Asada, K. Nozawa, S. Hachiga, T. Kurosaki, O. Ikagawa, H. Jujiki, K. Hozumi, T. Kawamura, T. Amakwa, K. Hirota, and T. Ikeda, Jpn. J. Appl. Phys. 34, 5462 (1995).Google Scholar
  6. 6.
    Seung-Eek Park and Kug Sun Hong, J. Appl. Phys. 79, 383 (1996).Google Scholar
  7. 7.
    Y.M. Chiang, G.W. Farrey, and Andrey N. Soukhojak, Appl. Phys. Lett. 73, 3683 (1998).Google Scholar
  8. 8.
    Aree Herabut and A. Safari, J. Am. Ceram. Soc. 80, 2954 (1997).Google Scholar
  9. 9.
    Chang Yeoul Kim, Tohru Sekino, and Koichi Niihara, J. Am. Ceram. Soc. 86, 1464 (2003).Google Scholar
  10. 10.
    L. Hench and G. Orcel, J. Non-Cryst. Solids 79, 177 (1986).CrossRefGoogle Scholar
  11. 11.
    S. Doeuff, M. Henry, C. Sanchez, and J. Livage, J. Non-Cryst. Solids 89, 206 (1987).Google Scholar
  12. 12.
    R. Urlaup, U. Posset, and R. Thull, J. Non-Cryst. Solids 265, 276 (2000).Google Scholar
  13. 13.
    M. Arima, M. Kakihana. Y. Nakamura, M. Yahima, and M. Yoshimura, J. Am. Ceram. Soc. 79, 2847 (1996).Google Scholar
  14. 14.
    J. Guilment, O. Poncelet, J. Rigola, and S. Tuchet, Vibration. Spectr. 11, 37 (1996).Google Scholar
  15. 15.
    M. Payne and K. Berglund, Mat. Res. Soc. Symp. Proc. 73, 627 (1986).Google Scholar
  16. 16.
    D. Hennings and W. Mayr, J. Solid State Chem. 26, 329 (1978).Google Scholar
  17. 17.
    A.V. Prasada Rao, A.I. Robin, and S. Komarneni, Mater. Lett. 28, 469 (1996).Google Scholar
  18. 18.
    M.S. Zhang, J.P. Scott, and J.V. Zvirgzde, Ferroelectr. Lett. 6, 147 (1986).Google Scholar
  19. 19.
    I.G. Sinii, T.A. Smirnova, and T.V. Kruzina, Sov. Phys. Solid State 33, 61 (1991).Google Scholar
  20. 20.
    I.G. Siny, T.A. Smirnova, and T.V. Kruzina, Ferroelectrics 124, 207 (1991).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Chang-Yeoul Kim
    • 1
  • Tohru Sekino
    • 2
  • Yo Yamamoto
    • 2
  • Koichi Niihara
    • 2
  1. 1.Korea Institute of Ceramic Engineering and TechnologySeoulKorea
  2. 2.The Institute of Scientific and Industrial ResearchOsaka UniversityOsakaJapan

Personalised recommendations