Journal of Sol-Gel Science and Technology

, Volume 38, Issue 1, pp 13–17 | Cite as

Sol-gel Preparation of Fluoridated Hydroxyapatite in Ca(NO3)2-PO(OH)3− x (OEt) x -HPF6 System

  • Kui Cheng
  • Sam Zhang
  • Wengjian Weng


Fluoridated hydroxyapatite (FHA) has been successfully synthesized via sol-gel method with HPF6 as the fluorine containing reagent. The chemical reactions induced by HPF6 addition and the formation process of fluoridated hydroxyapatite (FHA) are investigated. The hydrolysis and alcoholysis of HPF6 release F ion into the solution which, in turn, reacts with Ca ion to form nanocrystalline CaF2 (nc-CaF2). These nc-CaF2 improves the gelation ability of the system through formation of F‒H hydrogen bonding between F in nc-CaF2 and H in P precursors. Increasing HPF6 leads to more nc-CaF2 thus less Ca(NO3)2 in the dried gel, or the presence of nc-CaF2 in the gel suppresses the formation of Ca(NO3)2. At elevated firing temperatures, the P containing groups react with each other to form condensed phosphate. These condensed calcium phosphate, nc-CaF2/Ca(NO3)2, reacts with the rest of the amorphous phase to form FHA phase at above 400°C.


HPF6 CaF2 sol-gel processing fluoridated hydroxyapatite hydrogen bonding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. de Groot, R. Geesink, C.P.A.T. Klein, and P. Serekian, J. Biomed. Mater. Res. 21, 1375 (1987).CrossRefGoogle Scholar
  2. 2.
    S. Overgaard, M. Lind, K. Josephsen, A. B. Maunsbach, C. Bnger, and K. Soballe, J. Biomed. Mater. Res. 39, 141 (1998).CrossRefGoogle Scholar
  3. 3.
    L. Gineste, M. Gineste, X. Ranz, A. Ellefterion, A. Guilhem, N. Rouquet, and P. Frayssinet, J. Biomed. Mater. Res. 48, 224 (1999).CrossRefGoogle Scholar
  4. 4.
    F.C.M. Driessens, Nature 243, 420 (1973).CrossRefGoogle Scholar
  5. 5.
    W.J.A. Dhert, C.P.A.T. Klein, J.A. Jansen, E.A. van der Velde, R.C. Vriesde, P.M. Rozing, and K. de Groot, J. Biomed. Mater. Res. 27(1), 127 (1993).CrossRefGoogle Scholar
  6. 6.
    J.E.G. Hulshoff, K. von Dijk, J.P.C.M. van. Der. Waerden, W. Kalk, and J. A. Jansen, J. Mater. Sci.: Materials in Medicine 7, 603 (1996).CrossRefGoogle Scholar
  7. 7.
    H. Kim, Y. Kong, and J. C. Knowles, Biomaterials 25, 3351 (2004).CrossRefGoogle Scholar
  8. 8.
    M. Cavalli, G. Gnappi, A. Montener, C. Bersani, P. P. Lottici, S. Karciulis, G. Mattogno, and M. Fini, J. Mater. Sci. 36, 3253 (2001).CrossRefGoogle Scholar
  9. 9.
    K. Cheng, W. Weng, H. Qu, P. Du, G. Shen, G. Han, J. Yang, and J. M. F. Ferreira, J. Biomed. Mater. Res. Part B, Appl. Biomater. 69B, 33 (2004).CrossRefGoogle Scholar
  10. 10.
    U. Partenfelder, A. Engela, and C. Russel, J. Mater. Sci. 4, 292 (1993).CrossRefGoogle Scholar
  11. 11.
    K. Cheng, G. Han, W. Weng, H. Qu, P. Du, G. Shen, J. Yang, and J.M.F. Ferreira, Mater. Res. Bull. 38, 89 (2003).CrossRefGoogle Scholar
  12. 12.
    K. Cheng, S. Zhang, and W. Weng, Surface and Coatings Technology 198 237 (2005).CrossRefGoogle Scholar
  13. 13.
    W. Weng and J. L. Baptista, Biomaterials 19, 125 (1998).CrossRefGoogle Scholar
  14. 14.
    D. R. Lide, Handbook of Chemistry and Physics, 85th edition, (CRC Press, Boca Raton, 2004), p. 4–49.Google Scholar
  15. 15.
    J. Livage, P. Barboux, M. T. Vanderborre, C. Schmutz, and F. Taulelle, J. Non-Cryst. Solids 147&148, 18 (1992).CrossRefGoogle Scholar
  16. 16.
    J.P. Cassella, P.J. Barrie, N. Garrington, and S. Y. Ali, J. Bone and Mineral Metabolism 18, 291 (2000).CrossRefGoogle Scholar
  17. 17.
    G. Jiang and D. Shi, J. Biomed. Mater. Res. 48, 117 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore
  2. 2.Department of Materials Science and EngineeringZhejiang University, HangzhouZhejiangP.R. China

Personalised recommendations