Journal of Sol-Gel Science and Technology

, Volume 33, Issue 2, pp 201–213 | Cite as

Synthesis, Characterization and Photocatalytic Activity of TiO2 Powders Prepared Under Different Gelling and Pressure Conditions

  • Marco Ischia
  • Renzo Campostrini
  • Luca Lutterotti
  • Elisa García-López
  • Leonardo Palmisano
  • Mario Schiavello
  • Fabrizio Pirillo
  • Raffaele Molinari


Homogeneous TiO2 gel powders were prepared by hydrolysis and condensation of titanium(IV) isopropoxide with HCl or SnCl2 catalysts, by working under reduced pressure or in air. Ti(IV) alkoxide was previously modified by reaction with formic or acetic acid, used as chelating ligands, when gelation was performed in acidic catalysis. Crude TiO2 xerogels were purified by water reflux treatment in order to induce a low temperature crystallisation to the anatase phase. Both crude and purified TiO2 samples were characterised by XRD, FT-IR, SEM, and N2 adsorption analysis. Thermoanalyses (TG, DTA, DTG, TG-MS, TG-GC-MS) were carried out to quantify the residual organic components in the crude TiO2 gels and to obtain stoichiometric formulas to describe their chemical compositions. XRD data of purified TiO2 powders were processed by means of a Rietveld refinement procedure to determine TiO2 polymorphs, crystallite sizes and cell parameters, before their use in photocatalytic tests. The photoactivity of the purified TiO2 anatase powders was studied by using 4-nitrophenol degradation as “probe” reaction carried out in a batch and/or a membrane photoreactor. Samples prepared by using formic acid or SnCl2 were the most photoactive, whereas specimens gelled under vacuum treatment showed detrimental effects.


TiO2 gels modified alkoxide precursors 4-nitrophenol photodegradation membrane photocatalytic reactor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.F. Ollis and H. Al-Ekabi, Photocatalyic Purification of Water and Treatment and Air (Elsevier, Amsterdam, 1993).Google Scholar
  2. 2.
    G.R. Helz, R.G. Zepp, and D.G. Crosby, Aquatic and Surface Photochemistry (Lewis Publishers, Boca Raton, 1994).Google Scholar
  3. 3.
    V. Augugliaro, L. Palmisano, A. Sclafani, C. Minero, and E. Pelizzetti, Toxicol. Environ. Chem. 16, 2015 (1988).Google Scholar
  4. 4.
    V. Augugliaro, L. Palmisano, M. Schiavello, A. Sclafani, L. Marchese, G. Martra, and F. Miano, Appl. Catal. 69, 323 (1991).Google Scholar
  5. 5.
    R. Molinari, L. Palmisano, E. Drioli, and M. Schiavello, J. Membr. Sci. 206, 399 (2002).Google Scholar
  6. 6.
    B.E. Yoldas, J. Mater. Sci. 21, 1087 (1986).Google Scholar
  7. 7.
    D. Robert and J.V. Weber, J. Mater. Sci. Lett. 18, 97 (1999).Google Scholar
  8. 8.
    W.W. So, S.B. Park, and S.J. Moon, J. Mater. Sci. Lett. 17, 1219 (1998).Google Scholar
  9. 9.
    G. Marcì, L. Palmisano, A. Sclafani, A.M. Venezia, R. Campostrini, G. Carturan, C. Martin, V. Rives, and G. Solana, J. Chem. Soc., Faraday Trans. 92, 819 (1996).Google Scholar
  10. 10.
    G. Facchin, G. Carturan, R. Campostrini, S. Gialanella, L. Lutterotti, L. Armelao, G. Marcì, L. Palmisano, and A. Sclafani, J. Sol-Gel Sci. Technol. 18, 29 (2000).Google Scholar
  11. 11.
    R. Campostrini, G. Carturan, L. Palmisano, M. Schiavello, and A. Sclafani, Mat. Chem. Phys. 38, 277 (1994).Google Scholar
  12. 12.
    C. Sanchez, P. Toledano, and F. Ribot, Mater. Res. Soc. Symp. Proc. 180, 47 (1990).Google Scholar
  13. 13.
    T.J. Boyle, T.M. Alam, C.J. Tafoya, and B.L. Scott, Inorg. Chem. 37, 5588 (1998).Google Scholar
  14. 14.
    A.P. Hagan, M. G. Lofthouse, F. S. Stone, and M. A. Trevethan, in Studies in Surface Science and Catalysis, edited by B. Delmon, P. Grange, P. Jacobs, and G. Poncelet (Elsevier, Amsterdam, 1979), p. 417.Google Scholar
  15. 15.
    S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, London, 1982).Google Scholar
  16. 16.
    P.A. Webb and C. Orr, Analitycal Methods in Fine Particles Technology (Micromeritics Instrument Corporation, Norcross, USA, 1997).Google Scholar
  17. 17.
    R. Campostrini, M. Ischia, and L. Palmisano, J. Therm. Anal. Cal. 71, 997 (2003).Google Scholar
  18. 18.
    L. Lutterotti, S. Matthies, and H.-R. Wenk, CPD Newsletter IUCr 21, 14 (1999).Google Scholar
  19. 19.
    A. Le Bail, J. Non-Cryst. Solids 183, 39 (1995).Google Scholar
  20. 20.
    L. Lutterotti, R. Campostrini, R. Di Maggio, and S. Gialanella, Mat. Sci. Forum 343, 657 (2000).Google Scholar
  21. 21.
    M. Ischia, R. Campostrini, G. Carturan, E. García-López, G. Marcí, L. Palmisano, and M. Schiavello, in Proceeding of III CNDR Convegno Nazionale dei Docenti e Ricercatori di Chimica delle Facolta di Ingegneria, Trento, p. 96.Google Scholar
  22. 22.
    T. López, E. Sánchez, P. Bosch, Y. Meas, and R. Gomez, Mater. Chem. Phys. 32, 141 (1992).Google Scholar
  23. 23.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley and Sons, New York, 1986).Google Scholar
  24. 24.
    N.B. Colthup, L.H. Daly, and S.E. Wiberley, Introduction to Infrared and Raman Spetroscopy (Academic Press, San Diego, 1990).Google Scholar
  25. 25.
    R. Campostrini, M. Ischia, and L. Palmisano, J. Therm. Anal. Cal. 75, 13 (2004).Google Scholar
  26. 26.
    R. Campostrini, M. Ischia, and L. Palmisano, J. Therm. Anal. Cal. 75, 25 (2004).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Marco Ischia
    • 1
  • Renzo Campostrini
    • 1
  • Luca Lutterotti
    • 1
  • Elisa García-López
    • 2
  • Leonardo Palmisano
    • 2
  • Mario Schiavello
    • 2
  • Fabrizio Pirillo
    • 3
  • Raffaele Molinari
    • 3
  1. 1.Dipartimento di Ingegneria dei MaterialiUniversità di TrentoTrentoItaly
  2. 2.Dipartimento di Ingegneria Chimica Dei processi e dei MaterialiUniversità di PalermoPalermoItaly
  3. 3.Dipartimento di Ingegneria Chimica e dei MaterialiUniversità della CalabriaRende (CS)Italy

Personalised recommendations