Advertisement

Journal of Sol-Gel Science and Technology

, Volume 36, Issue 2, pp 173–182 | Cite as

Reduction of Cr(VI) Assisted by Sol-Gel Generated Electron-Hole Centers

  • M. A. Zaitoun
  • L. S. Bailey
  • J. F. Brinkley
  • C. M. Dickerson
  • C. T. Lin
Article
  • 53 Downloads

Abstract

We report an in-situ harvesting technique of electron-hole (e-h+) carriers (e.g., the defect electrons in the O2 − matrix and the self-trapped holes, Si–O–Si) generated during sol-gel processing. In the absence of redox species, the e-h+ centers created during room temperature sol-gel polycondensation steps are quickly annihilated and deactivated. However, when Cr(VI) ions are pre-dispersed in sol-gel solutions, the ejected electrons can be effectively harvested for the reduction of Cr(VI) to Cr(III) ions which are encapsulated in the silica gel matrix. The Cr(VI) ions, the possible intermediate oxidation states of chromium ions such as Cr(V) and/or Cr(IV), and the stable Cr(III)-hole complexes in the sol-gel matrix are investigated using uv-visible spectroscopy, electron paramagnetic resonance spectroscopy, and cyclic voltammetry. The chemical stability of Cr(VI) and Cr(III) in sol-gel networks is compared to that in aqueous solutions. The results indicate that the utilization of e-h+ carriers generated in the sol-gel can be an effective and selective means for investigating the redox process of Cr(VI) and encapsulating the stable Cr(III) ions in the confined sol-gel environments.

Keywords

sol-gel electron-hole centers chromate reduction and intermediates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, CA, 1990).Google Scholar
  2. 2.
    B.E. Yoldas, J. Mater. Sci. 23, 1895 (1988).CrossRefGoogle Scholar
  3. 3.
    M.A. Zaitoun, T. Kim, and C.T. Lin, J. Phys. Chem. B 102, 1122 (1998).CrossRefGoogle Scholar
  4. 4.
    F. Freund, M.M. Masuda, and M.M. Freund, J. Mater. Res. 6(8), 1619 (1991).Google Scholar
  5. 5.
    D.L. Griscom, Phys. Rev. B40, 4224 (1989).Google Scholar
  6. 6.
    G. Kordas, J. Non-Cryst. Solids 147/148, 106 (1992).CrossRefGoogle Scholar
  7. 7.
    B.M. Weckhuysen, I.E. Wachs, and R.A. Schoonheydt, Chem. Rev. 96, 3327 (1996).CrossRefGoogle Scholar
  8. 8.
    N.N. Greenwood and A. Earnshaw, Chemistry of the Elements (Pergamon Press, Oxford, 1984).Google Scholar
  9. 9.
    F.A. Cotton, G. Wilkinson, P.L. Gaus (eds.), Basic Inorganic Chemistry, 2nd edition (Chichester, Wiley, 1987), p. 475.Google Scholar
  10. 10.
    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon Press, Elmsford, NI, 1966).Google Scholar
  11. 11.
    E. Berman (ed.), Toxic Metals and Their Analysis (Heyden International Topics in Sciencc) (London, Heyden, 1980).Google Scholar
  12. 12.
    IARC Monographs of the Evaluation of the Carcinogenic Risk of Chemicals to Humans (Lyon, France, International Agency for Research on Cancer, 1990).Google Scholar
  13. 13.
    A. Aitio and L. Tomatis, in On the Carcinogenicity of Nickel and Chromium and their Compounds, Trace Elements in Health and Disease (Cambridge, Royal Society of Chemistry, 1991), p.168.Google Scholar
  14. 14.
    P.O. O'Brien and A. Kortenkamp, Transit. Metal Chem. 20, 636 (1995).Google Scholar
  15. 15.
    F. Pearlstein and V.S. Agarwala, Plat. Surf. Fin. 81, 50 (1994).Google Scholar
  16. 16.
    M.A. Zaitoun, D.M. Goken, L.S. Bailey, T. Kim, and C.T. Lin, J. Phys. Chem. B 104, 189 (2000).CrossRefGoogle Scholar
  17. 17.
    J.A. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 1st (edition) (John Wiley & Sons, New York, 1980).Google Scholar
  18. 18.
    T. Bates, in Modern Aspect of the Vitreous State, Vol. 2, edited by J.D. Mackenzie (London, Butterworth, 1962), p. 195.Google Scholar
  19. 19.
    P.W. Schindler, W. Stumm, in Aquatic Surface Chemistry, edited by W. Stumm (New York, John Wiley & Sons, 1987), p. 83.Google Scholar
  20. 20.
    K. Tanaka and K. Kamiya, J. Mater. Sci. Lett. 10, 1095 (1991).CrossRefGoogle Scholar
  21. 21.
    R. Bruckner, M. Sammet, and H. Stockhorst, J. Non-Crystal. Solids 40, 273–289 (1980).Google Scholar
  22. 22.
    B.E. Yoldas, J. Mater. Res. 5, 1157 (1990).Google Scholar
  23. 23.
    P.S. Devi, H.D. Gafney, V. Petricevic, R.R. Alfano, D. He, and K.E. Miyano, Chem. Mater. 12, 1378 (2000).Google Scholar
  24. 24.
    H.A. Headlam and P.A. Lay, Inorg. Chem. 40, 78 (2001).Google Scholar
  25. 25.
    F. Freeman, C.R. Armstead, M.G. Essig, E.M. Karchefski, C.J. Kojima, C. Manopoli, and A.H.J.C.S. Wickman, Chem. Comm. 65–66 (1980).Google Scholar
  26. 26.
    P. Audebert, P. Griesmar, and C. Sanchez, J. Mater. Chem. 1(4), 699–700 (1991).CrossRefGoogle Scholar
  27. 27.
    R.N. Bose, B. Fonkeng, G. Barr-David, R.P. Farrell, R.J. Judd, P.A. Lay, and D.F. Sangster, J. Am. Chem. Soc. 118, 7139 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • M. A. Zaitoun
    • 1
    • 2
  • L. S. Bailey
    • 1
  • J. F. Brinkley
    • 1
  • C. M. Dickerson
    • 1
  • C. T. Lin
    • 1
  1. 1.Department of Chemistry and BiochemistryNorthern Illinois UniversityDeKalb
  2. 2.Department of ChemistryMu'tah UniversityMu'tah/Al-Karak

Personalised recommendations