Journal of Sol-Gel Science and Technology

, Volume 36, Issue 2, pp 183–195 | Cite as

A Study on the Influences of Processing Parameters on the Growth of Oxide Nanorod Arrays by Sol Electrophoretic Deposition

  • S. J. Limmer
  • T. P. Chou
  • G. Z. Cao


Template-based sol electrophoretic deposition has been demonstrated as an attractive method for the synthesis of oxide nanorod arrays, including simple and complex oxides in the forms of amorphous, polycrystalline, and single crystal. This paper systematically studied a number of processing parameters to control nanorod growth by sol electrophoretic deposition. The influences of particle and template zeta potentials, condensation rate, deposition rate (or externally applied electric field), the presence of organic additives, and sol concentration on the growth of nanorod arrays were studied. It was found that higher zeta potential or electric field resulted in higher growth rates but less dense packing. Templates with charge opposite to that of the sol particles prevented formation of dense nanorods, sometimes resulting in nanotubes, depending on the field strength during electrophoresis. In addition, the pH of the sol and chelating additives were also varied and likely affected the deposition process by affecting the condensation reactions.


sol electrophoresis electrophoretic deposition sol-gel processing template-assisted nanorod growth oxide nanorods nanorod arrays 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.Z. Cao, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications (Imperial College Press, London, 2004).Google Scholar
  2. 2.
    C.M. Lieber, Solid State Comm. 107, 607 (1998).Google Scholar
  3. 3.
    Y. Xia, P. Yang, Y. Sun, B. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003).Google Scholar
  4. 4.
    G.R. Patzke, F. Krumeich, and R. Nesper, Angew. Chem. Int. Ed. 41, 2447 (2002).CrossRefGoogle Scholar
  5. 5.
    G.Z. Cao, J. Phys. Chem. B108, 19921 (2004).Google Scholar
  6. 6.
    Y. Lin, G.S. Wu, X.Y. Yuan, T. Xie, and L.D. Zhang, J Phys.-Condens. Mat. 15, 2917 (2003).Google Scholar
  7. 7.
    S.J. Limmer, S.V. Cruz, and G.Z. Cao, Appl. Phys. A79, 421 (2004).Google Scholar
  8. 8.
    K. Takahashi, S.J. Limmer, Y. Wang, and G.Z. Cao, Jpn. J. Appl. Phys. 44B, 662 (2005).Google Scholar
  9. 9.
    S.J. Limmer and G.Z. Cao, Adv. Mater. 15, 427 (2003).CrossRefGoogle Scholar
  10. 10.
    S.J. Limmer, S. Seraji, M.J. Forbess, Y. Wu, T.P. Chou, C. Nguyen, and G.Z. Cao, Adv. Mater. 13, 1269 (2001).CrossRefGoogle Scholar
  11. 11.
    S.J. Limmer, S. Seraji, Y. Wu, T.P. Chou, C. Nguyen, and G.Z. Cao, Adv. Funct. Mater. 12, 59 (2002).CrossRefGoogle Scholar
  12. 12.
    S.J. Limmer, T.P. Chou, and G.Z. Cao, J. Mater. Sci. 39, 895 (2004).CrossRefGoogle Scholar
  13. 13.
    R.J. Hunter, Zeta Potential in Colloid Science (Academic Press, London, 1981).Google Scholar
  14. 14.
    A. Navarro, J.R. Alcock, and R.W. Whatmore, J. Eur. Ceram. Soc. 24, 1073 (2004).CrossRefGoogle Scholar
  15. 15.
    J. Ma, R. Zhang, C.H. Liang, and L. Weng, Mater. Lett. 57, 4648 (2003).Google Scholar
  16. 16.
    C. Lettmann, D. Möckel, and E. Staude, J. Membrane Sci. 159, 243 (1999).CrossRefGoogle Scholar
  17. 17.
    K.S. Seshadri, R. Kesavamoorthy, M.P. Srinivasan, K. Varatharajan, J. Ahmed, and V. Krishnasamy, B. Electrochem. 14, 16 (1998).Google Scholar
  18. 18.
    Y.C. Wang, I.C. Leu, and M.H. Hon, J. Mater. Chem. 12, 2439 (2002).Google Scholar
  19. 19.
    B.B. Lakshmi, P.K. Dorhout, and C.R. Martin, Chem. Mater. 9, 857 (1997).Google Scholar
  20. 20.
    K.J. Kim, A.G. Fane, M. Nyström, and A. Pihlajamaki, J. Membrane Sci. 134, 199 (1997).CrossRefGoogle Scholar
  21. 21.
    C. Lettmann, D. Möckel, and E. Staude, J. Membrane Sci. 159, 243 (1999).CrossRefGoogle Scholar
  22. 22.
    M. Kosmulski, Langmuir 13, 6315 (1997).CrossRefGoogle Scholar
  23. 23.
    C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physical and Chemistry of Sol-Gel Processing (Academic Press, Boston, 1990).Google Scholar
  24. 24.
    R.K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (John Wiley & Sons, New York, NY, 1979).Google Scholar
  25. 25.
    C. Sanchez, J. Livage, M. Henry, and F. Babonneau, J. Non-Cryst. Solids 100, 65 (1988).CrossRefGoogle Scholar
  26. 26.
    S. Barboux-Doeuff and C. Sanchez, Mat. Res. Bull. 29, 1 (1994).CrossRefGoogle Scholar
  27. 27.
    R. Nass and H. Schmidt, J. Non-Cryst. Solids 121, 329 (1990).Google Scholar
  28. 28.
    T. Nishide and F. Mizukami, Thin Solid Films 259, 212 (1995).CrossRefGoogle Scholar
  29. 29.
    N. Tohge, E. Fujii, and T. Minami, J. Mater. Sci.-Mater. El. 5, 356 (1994).Google Scholar
  30. 30.
    A. Leaustic, F. Babonneau, and J. Livage, Chem. Mater. 1, 248 (1989).Google Scholar
  31. 31.
    P. Papet, N. Le Bars, J.F. Baumard, A. Lecomte, and A. Dauger, J. Mater. Sci. 24, 3850 (1989).CrossRefGoogle Scholar
  32. 32.
    M. Sedlar and M. Sayer, J. Sol-Gel Sci. Tech. 5, 27 (1995).Google Scholar
  33. 33.
    S. Basu and K.K. Chatterji, Z. Phys. Chem. (Leipzig) 209, 360 (1958).Google Scholar
  34. 34.
    K. Yamasaki, K. Sone, Nature 166, 998 (1950).Google Scholar
  35. 35.
    J. Selbin, Chem. Rev. 65, 153 (1965).CrossRefGoogle Scholar
  36. 36.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd (ed.) (John Wiley & Sons, New York, 1978).Google Scholar
  37. 37.
    Y.-C. Wang, I.-C. Leu, and M.-H. Hon, Electrochem. Solid St. 5, C53 (2002).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of WashingtonSeattleUSA
  2. 2.Materials Research CenterUniversity of Missouri-RollaRollaUSA

Personalised recommendations