Journal of Sol-Gel Science and Technology

, Volume 35, Issue 3, pp 221–224 | Cite as

Synthesis and Characterization of Nanocrystalline Zinc Aluminum Spinel by a New Sol-Gel Method

  • Xiulan Duan
  • Duorong Yuan
  • Xinqiang Wang
  • Hongyan Xu


Using Al(O i Pr)3 (aluminium-iso-propoxide) and Zn(NO3)2⋅ 6H2O as starting materials, HNO3 as catalyst, ZnAl2O4 spinel nanometer powders were prepared at lower sintering temperatures. The gels and sintered samples of ZnAl2O4 were characterized by means of thermogravimetry and differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectra and transmission electron microscope (TEM). Pure ZnAl2O4 spinel nanometer powders were produced by calcining the gel above 450C, with the crystallite size of 7–20 nm in the temperature range of 500–900C.


nanomaterial sol-gel X-ray diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Roesky, J. Weiguny, H. Bestgen, and U. Dingerdissen, Appl. Catal. A: General 176, 213 (1999).CrossRefGoogle Scholar
  2. 2.
    W.S. Tzing and W.H. Tuan, J. Mater. Sci. Lett. 15, 1395 (1996).CrossRefGoogle Scholar
  3. 3.
    S.K. Sampath and J.F. Cordaro, J. Am. Ceram. Soc. 81, 649 (1998).Google Scholar
  4. 4.
    M.A. Valenzuela, J.P. Jacobs, P. Bosch, S. Reijne, B. Zapata, and H.H. Brongersma, Appl. Cata. A: General 148, 315 (1997).CrossRefGoogle Scholar
  5. 5.
    W.S. Hong, L.C. De Jonghe, X. Yang, and M.N. Rahaman, J. Am. Ceram. Soc. 78, 3217 (1995).CrossRefGoogle Scholar
  6. 6.
    W. Strek, P. Deren, A. Bednarkiewicz, M. Zawadzki, and J. Wrzyszcz, J. Alloys Compounds 300, 456 (2000).CrossRefGoogle Scholar
  7. 7.
    S. Mathur, M. Veith, M. Haas, H. Shen, N. Lecerf, and V. Huch, J. Am. Ceram. Soc. 84, 1921 (2001).Google Scholar
  8. 8.
    T. Mimani, J. Alloys Compounds 315, 123 (2001).CrossRefGoogle Scholar
  9. 9.
    A.K. Adak, A. Pathak, and P. Pramanlk, J. Mater. Sci. Lett. 17, 559 (1998).CrossRefGoogle Scholar
  10. 10.
    X.L. Duan, D.R. Yuan, and Z.H. Sun, J. Alloys Compounds 386, 311 (2005).CrossRefGoogle Scholar
  11. 11.
    K. Lashgari and G. Westin, J. Sol-Gel Sci. Techn. 13, 865 (1998).Google Scholar
  12. 12.
    J. Calbo, A. Mestre, A. Garcia, M.A. Tena, M. Llusar and G. Monros, J. Sol-Gel Sci. Techn. 26, 191 (2003).Google Scholar
  13. 13.
    W.X. Kuang, Y.N. Fan, K.W. Yao, and Y. Chen, J. Solid State Chem. 140, 354 (1998).L.Google Scholar
  14. 14.
    Abello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeau, and M. Roumyantseva, J. Solid State Chem. 135, 78 (1998).CrossRefGoogle Scholar
  15. 15.
    A. Gamard, O. Babaot, B. Jousseaucne, M.C. Rascle, T. Toupance, and G. Campet, Chem. Mater. 12, 3419 (2000).CrossRefGoogle Scholar
  16. 16.
    S.W. Lee, and R.A.C. Sr, J. Mater. Sci. 23, 2951 (1988).CrossRefGoogle Scholar
  17. 17.
    H.A. Lehmann and H. Hesselbarth, Z. Anorg. Chem. 313, 117 (1961).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Xiulan Duan
    • 1
  • Duorong Yuan
    • 1
  • Xinqiang Wang
    • 1
  • Hongyan Xu
    • 1
  1. 1.State Key Laboratory of Crystal MaterialsShandong UniversityJinanPeople’s Republic of China

Personalised recommendations