Journal of Sol-Gel Science and Technology

, Volume 35, Issue 2, pp 127–136 | Cite as

Photo-Induced Hydrophilicity of TiO2 Films Deposited on Stainless Steel via Sol-Gel Technique

  • S. Permpoon
  • M. Fallet
  • G. Berthomé
  • B. Baroux
  • J. C. Joud
  • M. Langlet


The photo-induced hydrophilicity of TiO2 films deposited on stainless steel substrates and silicon wafers using two different sol-gel routes has been investigated. The results indicate that crystalline titanium oxide films with excellent hydrophilic properties can be obtained on silicon wafer with both routes. XPS and XRD data reveal that films deposited on stainless steel exhibit crystallization features similar to those of films deposited on silicon wafers, and only differ by their oxidation degree owing to a TiO2 reduction process associated to a diffusion of iron ions during deposition of the acidic sol and/or high temperature post-treatment. Consequently, hydrophilic properties of films deposited on stainless steel are inhibited. The deposition of a SiO x barrier layer at the film/substrate interface allows preventing such a detrimental substrate influence. A low temperature deposition route of the TiO2 film associated to the presence of a barrier layer yields best results in preventing iron contamination of the films.


sol-gel process photo-induced hydrophilicity TiO2 films stainless steel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Fujishima and K. Honda, Nature 238, 37 (1972).CrossRefPubMedGoogle Scholar
  2. 2.
    R. Wang, N. Sakai, and A. Fujishima, J. Phys. Chem. B 103, 2188 (1999).CrossRefGoogle Scholar
  3. 3.
    N. Sakai, A. Fujishima, and T. Wanatabe, J. Phys. Chem B 105, 3023 (2001).CrossRefGoogle Scholar
  4. 4.
    T. Wanatabe, A. Nakajima, and R. Wang, Thin Solid Films 351, 260 (1999).CrossRefGoogle Scholar
  5. 5.
    X.P. Wang, Y. Yu, and X.F. Hu, Thin Solid Films 371, 148 (2000).CrossRefGoogle Scholar
  6. 6.
    J. Yu, X. Zhao, and Q. Zhao, Mater. Chem. Phys. 69, 25 (2001).CrossRefGoogle Scholar
  7. 7.
    R. Sun, A. Nakajima, and A. Fujishima, J. Phys. Chem B 105, 1984 (2001).CrossRefGoogle Scholar
  8. 8.
    J.C. Yu, J. Yu, H.Y. Tang, and L. Zhang, J. Mater. Chem. 12, 81 (2002).CrossRefGoogle Scholar
  9. 9.
    Y. Ohko, S. Saitoh, and T. Tatsuma, J. Electrochem. Soc. 148, B24 (2001).CrossRefGoogle Scholar
  10. 10.
    A. Fernandez, G. Lassaletta, and V.M. Jimenez, Apply. Catal. B: Environ. 7, 49 (1995).CrossRefGoogle Scholar
  11. 11.
    J.M. Hermann, Catalysis Today 54, 131 (1999).CrossRefGoogle Scholar
  12. 12.
    H.C. Chan, J.F. Porter, and J.P. Barford, J. Mater. Res. 17, 1758 (2002).Google Scholar
  13. 13.
    Y. Zhu, L. Zhang, and L. Wang, J. Mater. Chem. 11, 1864 (2001).CrossRefGoogle Scholar
  14. 14.
    J. Yu, W. Ho, and J. Lin, Environ. Sci. Tech. 37, 2296 (2003).CrossRefGoogle Scholar
  15. 15.
    T. Wanatabe, S. Fukayama, and M. Miyauchi, J. Sol-Gel Sci. Tech. 19, 71 (2000).CrossRefGoogle Scholar
  16. 16.
    A. Hattori, K. Shimoda, and H. Tada, Langmuir 15, 5422 (1999).CrossRefGoogle Scholar
  17. 17.
    M. Langlet, M. Burgos, and C. Coutier, J. Sol-Gel Sci. Tech. 22, 139 (2001).CrossRefGoogle Scholar
  18. 18.
    M. Langlet, A. Kim, and M. Audier, J. Mater. Sci. 38, 3945 (2003).CrossRefGoogle Scholar
  19. 19.
    R.J. Gonzales, R. Zallen, and H. Berger, Phys. Rev. B. 55, 7014 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • S. Permpoon
    • 1
    • 2
  • M. Fallet
    • 2
  • G. Berthomé
    • 1
  • B. Baroux
    • 1
  • J. C. Joud
    • 1
  • M. Langlet
    • 2
  1. 1.Laboratoire de Thermodynamique et de Physico-Chimie Métallurgique, ENSEEG-INPG, BP 75Domaine UniversitaireSaint Martin d’HèresFrance
  2. 2.Laboratoire des Matériaux et de Génie Physique, ENSPG-INPG, BP 46Domaine UniversitaireSaint Martin d’HèresFrance

Personalised recommendations