Journal of Sol-Gel Science and Technology

, Volume 34, Issue 2, pp 173–179 | Cite as

Effect of Fluorine Doping on Semiconductor to Metal-Like Transition and Optical Properties of Cadmium Oxide Thin Films Deposited by Sol–Gel Process

  • P. K. Ghosh
  • S. Das
  • S. Kundoo
  • K. K. Chattopadhyay


Highly conducting fluorine doped n-type cadmium oxide thin films have been synthesized by sol–gel dip coating process on glass and Si substrates for various fluorine concentrations in the films. X-ray diffraction pattern confirmed the cubic CdO phase formation and SEM micrograph showed fine particles of CdO with size ~0.3 μm. F concentration in the films was varied from 1.8% to 18.7% as determined from energy dispersive X-ray analysis (EDX). The resistivity of the CdO films decreased with increase of F doping and increase of temperature below 14.6% of F, as usual for semiconductors. Above this F concentration the resistivity increased with increase of temperature like metals. Hall measurement showed very high carrier concentrations in the films lying in the range of ~2.93 × 1020 cm−3 to 4.56 × 1021 cm−3. UV-VIS-NIR spectrum of the films showed the optical bandgap energy increased with increase of F doping and corresponding carrier concentrations obtained from Burstein-Moss shift also support the Hall measurement results.


cadmium oxide fluorine doping phase transition Burstein-Moss shift 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.S. Ginley and C. Bright, MRS Bull. 25, 15 (2000).Google Scholar
  2. 2.
    B.J. Lewis and D.C. Paine, MRS Bull. 25, 22 (2000).Google Scholar
  3. 3.
    K.L. Chopra, S. Major, and D.K. Pandya, Thin Solid Films 102, 1 (1983).Google Scholar
  4. 4.
    S. Pizzini, N. Butta, D. Narducci, and M. Palladino, J. Electrochem. Soc. 136, 1945 (1989).Google Scholar
  5. 5.
    D.M. Mattox, Thin Solid Films 204, 25 (1991).Google Scholar
  6. 6.
    G. Phatak and R. Lal, Thin Solid Films 245, 17 (1994).Google Scholar
  7. 7.
    A. Verkey and A.F. Fort, Thin Solid Films 239, 211 (1994).Google Scholar
  8. 8.
    A.J. Freeman, K.R. Poeppelmeier, T.O. Mason, R.P.H. Chang, and T.J. Marks, MRS Bull. 25, 45 (2000).Google Scholar
  9. 9.
    C.M. Cardile, A.J. Koplick, R. McPherson, and B.O. West, J. Mater. Sci. Lett. 8, 370 (1989).Google Scholar
  10. 10.
    H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono. Nature 389, 939 (1997).Google Scholar
  11. 11.
    A.N. Banerjee, S. Kundoo, and K.K. Chattopadhyay, Thin Solid Films 440, 5 (2003).Google Scholar
  12. 12.
    N. Duan, A.W. Sleight, M.K. Jayaraj, and J. Tate, Appl. Phys. Lett. 77, 1325 (2000).Google Scholar
  13. 13.
    A. Kudo, H. Yanagi, H. Hosono, and H. Kawazoe, Appl. Phys. Lett. 73, 220 (1998).Google Scholar
  14. 14.
    D.M. Mattox, Thin Solid Films 204, 25 (1991).Google Scholar
  15. 15.
    K. Gurumurugan, D. Mangalaraj, and S.K. Narayandass, Thin Solid Films 251, 7 (1994).Google Scholar
  16. 16.
    G. Sanatana, A.M. Acevedo, O. Vigil, F. Cruze, G. Contreras-Puente, and L. Vaillant, Superficiesy Vacio 9, 300 (1999).Google Scholar
  17. 17.
    N. Ueda, H. Meada, H. Hosono, and H. Kawazoe, J. Appl. Phys. 84, 6174 (1998).Google Scholar
  18. 18.
    M. Yan, M. Lane, C.R. Kannewurf, and R.P.H. Chang, Appl. Phys. Lett. 78, 2342 (2001).Google Scholar
  19. 19.
    A.B.M.A. Ashrafi, H. Kumano, I. Suemune, Y.W. Ok, and TY. Seong, J. Crystal Growth 237–239, 518 (2002).Google Scholar
  20. 20.
    S. Hayashi, Rev. Electr. Commun. Lab. 20, 698 (1972).Google Scholar
  21. 21.
    K. Tanaka, A. Kunioka, and Y. Sakai, Jpn. J. Appl. Phys. 8, 681 (1969).Google Scholar
  22. 22.
    P.K. Ghosh, R. Maity, and K.K. Chattopadhyay, Sol. Energy Mat. & Sol. Cells 81, 279 (2004).Google Scholar
  23. 23.
    A. Elhichou, A. Bougrine, J.L. Bubendoref, J. Ebothe, M. Addou, and M. Troyon, Semicond. Sci. Technol. 17, 607 (2002).Google Scholar
  24. 24.
    A.N. Banerjee, S. Kundoo, P. Saha, and K.K. Chattopadhyay, J. Sol-Gel Sci. Technol. 28, 105 (2003).Google Scholar
  25. 25.
    JCPDS Powder Diffraction file card 5-0640.Google Scholar
  26. 26.
    M. Ito, H. Nagai, T.Tahata, S. Katsuyama, and K. Majima, J. Appl. Phys. 92, 3217 (2002).Google Scholar
  27. 27.
    J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975).Google Scholar
  28. 28.
    E. Shanthi, A. Banerjee, V. Dutta, and K.L. Chopra, J. Appl. Phys. 53, 1615 (1982).Google Scholar
  29. 29.
    T. Pisarkiewicz, K. Zarkrzewska, and E. Keja, Thin Solid Films 174, 217 (1989).Google Scholar
  30. 30.
    X. Wu, T.J. Coutts, and W.P. Mulligan, J. Vac. Sci. Technol. A 15, 1057 (1997).Google Scholar
  31. 31.
    J.I. Pankove, in Optical Processes in Semiconductors (Prentice-Hall, Inc., New Jersey, 1971) p. 34.Google Scholar
  32. 32.
    K.K. Chattopadhyay, I. Sanyal, S. Chaudhuri, and A.K. Pal, Vacuum 42, 915 (1991).Google Scholar
  33. 33.
    T.J. Cutts, D.L. Young, W.P. Mulligan, X. Li, X. Wu, and J. Vac. Sic. Technol. A 18, 2646 (2000).Google Scholar
  34. 34.
    D.L. Young, T.J. Cutts, V.I. Kaydanov, A.S. Gilmore, and W.P. Mulligan, J. Vac. Sic. Technol. A 18, 2978 (2000).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • P. K. Ghosh
    • 1
  • S. Das
    • 1
  • S. Kundoo
    • 1
  • K. K. Chattopadhyay
    • 1
  1. 1.Department of PhysicsJadavpur UniversityKolkataIndia

Personalised recommendations