Journal of Sol-Gel Science and Technology

, Volume 32, Issue 1–3, pp 353–356 | Cite as

Effect of Concentration of the Diazoalcene Molybdenum Complex Immobilized in Ureasil Matrix

  • N. Nunes
  • F. Costa
  • A. M. Fonseca
  • C. J. R. Silva
  • I. C. Neves


The complex trans-[FMo(NNCHCHCHCH2CH3)(Ph2PCH2CH2PPh2)2][BPh4], was dispersed in a hybrid matrix synthesized by a sol-gel process. The host matrix of the so-called ureasil is a network of silica to which oligopolyoxyethylene chains [POE, (OCH2CH2) n ] are grafted by means of urea cross-links. The free complex and sol-gel materials were characterized by thermal analysis (DSC), surface analysis (XPS) and spectroscopic methods (FT-IR and UV/Vis). The data gathered indicates that the molybdenum(IV) complex is immobilized in the host matrix, and it exhibits structural properties different from those of the free form. These differences could arise either from distortions caused by steric effects imposed by the structure of hybrid matrix or by interactions with the matrix. These materials shows potential applications in heterogeneous catalysis in mild conditions.


molybdenum(IV) complex diazoalcene sol-gel complex immobilization host-guest 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Canali, and D.C. Sherrington, Chem. Soc. Rev. 28, 85 (1999).Google Scholar
  2. 2.
    D. Pini, A. Mandoli, S. Orlandi, P. Salvadori, Tetrahedron: Asym. 10, 3883 (1999).Google Scholar
  3. 3.
    C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990), p. 40.Google Scholar
  4. 4.
    D.R. Rolison and B. Dumn, J. Mater. Chem. 11, 963 (2001).Google Scholar
  5. 5.
    F. Costa, C.J.R. Silva, M. Raposo, A.M. Fonseca, I.C. Neves, A. P. Carvalho, and J. Pires, Micropor. Mesopor. Mat. 72, 111 (2004).Google Scholar
  6. 6.
    I. Neves, C. Freire, A.N. Zakharov, B. Castro, and J.L. Figueiredo, Colloids Surf. A. Physicochem. Eng. Aspects 115, 249 (1996).Google Scholar
  7. 7.
    M. Armand, C. Poinsignon, J.Y. Sanchez, and V.Z. Bermudez, U.S. Patent, 1994, 5, 283, 310.Google Scholar
  8. 8.
    V.Z. Bermudez, L.D. Carlos, M.C. Duarte, M.M. Silva, C.J.R. Silva, M.J. Smith, M. Assunço and L. Alcácer, J. Alloys Comp. 275, 21 (1998).Google Scholar
  9. 9.
    I. Montinho, V. Boev, A.M. Fonseca, C.J.R. Silva, and I.C. Neves, Solid State Sci. 5, 203 (2003).Google Scholar
  10. 10.
    Y. Ishii, H. Miyagi, S. Jitsukuni, H. Seino, B.S. Harkness, and M. Hidai, J. Am. Chem. Soc. 114, 9890 (1992).Google Scholar
  11. 11.
    M.M. Silva, V.Z. Bermudez, L.D. Carlos, A.P.P. Almeida, and M.J. Smith, J. Mater. Chem. 9, 1735 (1999).Google Scholar
  12. 12.
    C. Marques, A.M. Sousa, C. Freire, I.C. Neves, A.M. Fonseca, and C.J.R. Silva, J. Alloys Comp. 306 (2003) 272.Google Scholar
  13. 13.
    Y. Mizobe, Y. Uchida, and M. Hidai, Bull. Chem. Soc. Jpn. 53, 1781 (1980).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • N. Nunes
    • 1
  • F. Costa
    • 1
  • A. M. Fonseca
    • 1
  • C. J. R. Silva
    • 1
  • I. C. Neves
    • 1
  1. 1.Departamento de QuímicaUniversidade do Minho, Campus de GualtarBragaPortugal

Personalised recommendations