Skip to main content
Log in

Gene selection and cloning approaches for co-expression and production of recombinant protein–protein complexes

  • Published:
Journal of Structural and Functional Genomics

Abstract

Multiprotein complexes play essential roles in all cells and X-ray crystallography can provide unparalleled insight into their structure and function. Many of these complexes are believed to be sufficiently stable for structural biology studies, but the production of protein–protein complexes using recombinant technologies is still labor-intensive. We have explored several strategies for the identification and cloning of heterodimers and heterotrimers that are compatible with the high-throughput (HTP) structural biology pipeline developed for single proteins. Two approaches are presented and compared which resulted in co-expression of paired genes from a single expression vector. Native operons encoding predicted interacting proteins were selected from a repertoire of genomes, and cloned directly to expression vector. In an alternative approach, Helicobacter pylori proteins predicted to interact strongly were cloned, each associated with translational control elements, then linked into an artificial operon. Proteins were then expressed and purified by standard HTP protocols, resulting to date in the structure determination of two H. pylori complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alexandrov A, Vignali M, LaCount DJ, Quartley E, de Vries C, De Rosa D, Babulski J, Mitchell SF, Schoenfeld LW, Fields S, Hol WG, Dumont ME, Phizicky EM, Grayhack EJ (2004) A facile method for high-throughput co-expression of protein pairs. Mol Cell Proteomics 3(9):934–938

    Article  CAS  PubMed  Google Scholar 

  2. Alm EJ, Huang KH, Price MN, Koche RP, Keller K, Dubchak IL, Arkin AP (2005) The MicrobesOnline Web site for comparative genomics. Genome Res 15(7):1015–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Stevens RL, Vonstein V, Xia F (2012) SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 7(10):e48053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Babnigg G, Giometti CS (2006) A database of unique protein sequence identifiers for proteome studies. Proteomics 6(16):4514–4522

    Article  CAS  PubMed  Google Scholar 

  5. Bieniossek C, Nie Y, Frey D, Olieric N, Schaffitzel C, Collinson I, Romier C, Berger P, Richmond TJ, Steinmetz MO, Berger I (2009) Automated unrestricted multigene recombineering for multiprotein complex production. Nat Methods 6(6):447–450

    Article  CAS  PubMed  Google Scholar 

  6. Bowers PM, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D (2004) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5(5):R35

    Article  PubMed Central  PubMed  Google Scholar 

  7. Chaban Y, Boekema EJ, Dudkina NV (2014) Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Biochim Biophys Acta 1837(4):418–426

    Article  CAS  PubMed  Google Scholar 

  8. Cormier CY, Mohr SE, Zuo D, Hu Y, Rolfs A, Kramer J, Taycher E, Kelley F, Fiacco M, Turnbull G, LaBaer J (2010) Protein structure initiative material repository: an open shared public resource of structural genomics plasmids for the biological community. Nucleic Acids Res 38(Database issue):D743–D749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Corthesy-Theulaz IE, Bergonzelli GE, Henry H, Bachmann D, Schorderet DF, Blum AL, Ornston LN (1997) Cloning and characterization of Helicobacter pylori succinyl CoA:acetoacetate CoA-transferase, a novel prokaryotic member of the CoA-transferase family. J Biol Chem 272(41):25659–25667

    Article  CAS  PubMed  Google Scholar 

  10. Dehal PS, Joachimiak MP, Price MN, Bates JT, Baumohl JK, Chivian D, Friedland GD, Huang KH, Keller K, Novichkov PS, Dubchak IL, Alm EJ, Arkin AP (2010) MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res 38(Database issue):D396–D400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Dieckman L, Gu M, Stols L, Donnelly MI, Collart FR (2002) High throughput methods for gene cloning and expression. Protein Expr Purif 25(1):1–7

    Article  CAS  PubMed  Google Scholar 

  12. Donnelly MI, Zhou M, Millard CS, Clancy S, Stols L, Eschenfeldt WH, Collart FR, Joachimiak A (2006) An expression vector tailored for large-scale, high-throughput purification of recombinant proteins. Protein Expr Purif 47(2):446–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1):2126–2132

    Article  PubMed  Google Scholar 

  14. Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA (1999) Protein interaction maps for complete genomes based on gene fusion events. Nature 402(6757):86–90

    Article  CAS  PubMed  Google Scholar 

  15. Ermolaeva MD, White O, Salzberg SL (2001) Prediction of operons in microbial genomes. Nucleic Acids Res 29(5):1216–1221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Eschenfeldt WH, Stols L, Millard CS, Joachimiak A, Donnelly MI (2009) A family of LIC vectors for high-throughput cloning and purification of proteins. Methods Mol Biol 498:105–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Falguieres T, Luyet PP, Gruenberg J (2009) Molecular assemblies and membrane domains in multivesicular endosome dynamics. Exp Cell Res 315(9):1567–1573

    Article  CAS  PubMed  Google Scholar 

  18. Frydman J, Hartl FU (1996) Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms. Science 272(5267):1497–1502

    Article  CAS  PubMed  Google Scholar 

  19. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631–636

    Article  CAS  PubMed  Google Scholar 

  20. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA 3rd, Smith HO (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319(5867):1215–1220

    Article  CAS  PubMed  Google Scholar 

  21. Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182(2):319–326

    Article  CAS  PubMed  Google Scholar 

  22. Guell M, van Noort V, Yus E, Chen WH, Leigh-Bell J, Michalodimitrakis K, Yamada T, Arumugam M, Doerks T, Kuhner S, Rode M, Suyama M, Schmidt S, Gavin AC, Bork P, Serrano L (2009) Transcriptome complexity in a genome-reduced bacterium. Science 326(5957):1268–1271

    Article  PubMed  Google Scholar 

  23. Ha NC, Oh ST, Sung JY, Cha KA, Lee MH, Oh BH (2001) Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat Struct Biol 8(6):505–509

    Article  CAS  PubMed  Google Scholar 

  24. Haffke M, Marek M, Pelosse M, Diebold ML, Schlattner U, Berger I, Romier C (2015) Characterization and production of protein complexes by co-expression in Escherichia coli. Methods Mol Biol 1261:63–89

    Article  PubMed  Google Scholar 

  25. Haffke M, Viola C, Nie Y, Berger I (2013) Tandem recombineering by SLIC cloning and Cre-LoxP fusion to generate multigene expression constructs for protein complex research. Methods Mol Biol 1073:131–140

    Article  CAS  PubMed  Google Scholar 

  26. Huynen MA, Bork P (1998) Measuring genome evolution. Proc Natl Acad Sci USA 95(11):5849–5856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11(2):113–127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Janga SC, Babu MM (2009) Transcript stability in the protein interaction network of Escherichia coli. Mol BioSyst 5(2):154–162

    Article  CAS  PubMed  Google Scholar 

  29. Joachimiak A (2009) High-throughput crystallography for structural genomics. Curr Opin Struct Biol 19(5):573–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kall L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res 35(Web Server issue):W429–W432

    Article  PubMed Central  PubMed  Google Scholar 

  31. Karp PD, Riley M, Saier M, Paulsen IT, Collado-Vides J, Paley SM, Pellegrini-Toole A, Bonavides C, Gama-Castro S (2002) The EcoCyc database. Nucleic Acids Res 30(1):56–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kather B, Stingl K, van der Rest ME, Altendorf K, Molenaar D (2000) Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase. J Bacteriol 182(11):3204–3209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kawai M, Furuta Y, Yahara K, Tsuru T, Oshima K, Handa N, Takahashi N, Yoshida M, Azuma T, Hattori M, Uchiyama I, Kobayashi I (2011) Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes. BMC Microbiol 11:104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kim Y, Babnigg G, Jedrzejczak R, Eschenfeldt WH, Li H, Maltseva N, Hatzos-Skintges C, Gu M, Makowska-Grzyska M, Wu R, An H, Chhor G, Joachimiak A (2011) High-throughput protein purification and quality assessment for crystallization. Methods 55(1):12–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kuhner S, van Noort V, Betts MJ, Leo-Macias A, Batisse C, Rode M, Yamada T, Maier T, Bader S, Beltran-Alvarez P, Castano-Diez D, Chen WH, Devos D, Guell M, Norambuena T, Racke I, Rybin V, Schmidt A, Yus E, Aebersold R, Herrmann R, Bottcher B, Frangakis AS, Russell RB, Serrano L, Bork P, Gavin AC (2009) Proteome organization in a genome-reduced bacterium. Science 326(5957):1235–1240

    Article  PubMed  Google Scholar 

  36. Latchman DS (1997) Transcription factors: an overview. Int J Biochem Cell Biol 29(12):1305–1312

    Article  CAS  PubMed  Google Scholar 

  37. Li Z, Srivastava P (2004) Heat-shock proteins. Curr Protoc Immunol Appendix 1:Appendix 1T

  38. Makowska-Grzyska M, Kim Y, Maltseva N, Li H, Zhou M, Joachimiak G, Babnigg G, Joachimiak A (2014) Protein production for structural genomics using E. coli expression. Methods Mol Biol 1140:89–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Malecki M, Jedrzejczak R, Puchta O, Stepien PP, Golik P (2008) In vivo and in vitro approaches for studying the yeast mitochondrial RNA degradosome complex. Methods Enzymol 447:463–488

    Article  CAS  PubMed  Google Scholar 

  40. Malecki M, Jedrzejczak R, Stepien PP, Golik P (2007) In vitro reconstitution and characterization of the yeast mitochondrial degradosome complex unravels tight functional interdependence. J Mol Biol 372(1):23–36

    Article  CAS  PubMed  Google Scholar 

  41. Merino E, Jensen RA, Yanofsky C (2008) Evolution of bacterial trp operons and their regulation. Curr Opin Microbiol 11(2):78–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Minor W, Cymborowski M, Otwinowski Z, Chruszcz M (2006) HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes. Acta Crystallogr D Biol Crystallogr 62(Pt 8):859–866

    Article  PubMed  Google Scholar 

  43. Moreno-Hagelsieb G, Collado-Vides J (2002) A powerful non-homology method for the prediction of operons in prokaryotes. Bioinformatics 18(Suppl 1):S329–S336

    Article  PubMed  Google Scholar 

  44. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53(Pt 3):240–255

    Article  CAS  PubMed  Google Scholar 

  45. Nusca TD, Kim Y, Maltseva N, Lee JY, Eschenfeldt W, Stols L, Schofield MM, Scaglione JB, Dixon SD, Oves-Costales D, Challis GL, Hanna PC, Pfleger BF, Joachimiak A, Sherman DH (2012) Functional and structural analysis of the siderophore synthetase AsbB through reconstitution of the petrobactin biosynthetic pathway from Bacillus anthracis. J Biol Chem 287(19):16058–16072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Olins PO, Rangwala SH (1989) A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of the lacZ gene in Escherichia coli. J Biol Chem 264(29):16973–16976

    CAS  PubMed  Google Scholar 

  47. Osbourn AE, Field B (2009) Operons. Cell Mol Life Sci 66(23):3755–3775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA 96(6):2896–2901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 96(8):4285–4288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Perrakis A, Romier C (2008) Assembly of protein complexes by coexpression in prokaryotic and eukaryotic hosts: an overview. Methods Mol Biol (Clifton, NJ) 426:247–256

    Article  CAS  Google Scholar 

  51. Pfleger BF, Kim Y, Nusca TD, Maltseva N, Lee JY, Rath CM, Scaglione JB, Janes BK, Anderson EC, Bergman NH, Hanna PC, Joachimiak A, Sherman DH (2008) Structural and functional analysis of AsbF: origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis. Proc Natl Acad Sci USA 105(44):17133–17138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Price MN, Arkin AP, Alm EJ (2006) The life-cycle of operons. PLoS Genet 2(6):e96

    Article  PubMed Central  PubMed  Google Scholar 

  53. Price MN, Huang KH, Alm EJ, Arkin AP (2005) A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res 33(3):880–892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Prudencio M, Ubbink M (2004) Transient complexes of redox proteins: structural and dynamic details from NMR studies. J Mol Recognit 17(6):524–539

    Article  CAS  PubMed  Google Scholar 

  55. Pyndiah S, Lasserre JP, Menard A, Claverol S, Prouzet-Mauleon V, Megraud F, Zerbib F, Bonneu M (2007) Two-dimensional blue native/SDS gel electrophoresis of multiprotein complexes from Helicobacter pylori. Mol Cell Proteomics 6(2):193–206

    Article  CAS  PubMed  Google Scholar 

  56. Qi Y, Balem F, Faloutsos C, Klein-Seetharaman J, Bar-Joseph Z (2008) Protein complex identification by supervised graph local clustering. Bioinformatics 24(13):i250–i258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Qi Y, Bar-Joseph Z, Klein-Seetharaman J (2006) Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins 63(3):490–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Qi Y, Klein-Seetharaman J, Bar-Joseph Z (2007) A mixture of feature experts approach for protein–protein interaction prediction. BMC Bioinformatics 8(Suppl 10):S6

    Article  PubMed Central  PubMed  Google Scholar 

  59. Rain JC, Selig L, De Reuse H, Battaglia V, Reverdy C, Simon S, Lenzen G, Petel F, Wojcik J, Schachter V, Chemama Y, Labigne A, Legrain P (2001) The protein–protein interaction map of Helicobacter pylori. Nature 409(6817):211–215

    Article  CAS  PubMed  Google Scholar 

  60. Razick S, Magklaras G, Donaldson IM (2008) iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics 9:405

    Article  PubMed Central  PubMed  Google Scholar 

  61. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437(7062):1173–1178

    Article  CAS  PubMed  Google Scholar 

  62. Selleck W, Tan S (2008) Recombinant protein complex expression in E. coli. Curr Protoc Protein Sci Chapter 5:Unit 5 21

  63. Shi R, Munger C, Asinas A, Benoit SL, Miller E, Matte A, Maier RJ, Cygler M (2010) Crystal structures of apo and metal-bound forms of the UreE protein from Helicobacter pylori: role of multiple metal binding sites. Biochemistry 49(33):7080–7088

    Article  CAS  PubMed  Google Scholar 

  64. Stols L, Gu M, Dieckman L, Raffen R, Collart FR, Donnelly MI (2002) A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr Purif 25(1):8–15

    Article  CAS  PubMed  Google Scholar 

  65. Stols L, Zhou M, Eschenfeldt WH, Millard CS, Abdullah J, Collart FR, Kim Y, Donnelly MI (2007) New vectors for co-expression of proteins: structure of Bacillus subtilis ScoAB obtained by high-throughput protocols. Protein Expr Purif 53(2):396–403

    Article  CAS  PubMed  Google Scholar 

  66. Tan S (2001) A modular polycistronic expression system for overexpressing protein complexes in Escherichia coli. Protein Expr Purif 21(1):224–234

    Article  CAS  PubMed  Google Scholar 

  67. Timsit Y, Acosta Z, Allemand F, Chiaruttini C, Springer M (2009) The role of disordered ribosomal protein extensions in the early steps of eubacterial 50 s ribosomal subunit assembly. Int J Mol Sci 10(3):817–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Ubbink M (2009) The courtship of proteins: understanding the encounter complex. FEBS Lett 583(7):1060–1066

    Article  CAS  PubMed  Google Scholar 

  69. Vos MJ, Hageman J, Carra S, Kampinga HH (2008) Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry 47(27):7001–7011

    Article  CAS  PubMed  Google Scholar 

  70. Wojcik J, Schachter V (2001) Protein–protein interaction map inference using interacting domain profile pairs. Bioinformatics 17(Suppl 1):S296–S305

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank members of the Structural Biology Center at Argonne National Laboratory for their help with data collection at the 19-ID beamline. This work was supported by the National Institutes of Health Grants GM074942 and GM094585, and by the US Department of Energy, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357.

Author contributions

GB, R.J., M.D. and A.J. designed the experiments. R.J. and W.E. performed the cloning and small scale expression of the ‘Eps-RBS-fusion-strategy’ and ‘Operon-strategy’ targets. L.S., N.M., A.W. and R.W. purified and crystallized complexes, B.N and A.S. determined the structure of the protein complexes. All authors read and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to György Babnigg or Andrzej Joachimiak.

Additional information

György Babnigg and Robert Jedrzejczak have contributed equally to this work.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig.S1

Supplementary material 1 (TIFF 702 kb)

Fig.S2

Supplementary material 2 (TIFF 358 kb)

Fig.S3

Supplementary material 3 (TIFF 1036 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babnigg, G., Jedrzejczak, R., Nocek, B. et al. Gene selection and cloning approaches for co-expression and production of recombinant protein–protein complexes. J Struct Funct Genomics 16, 113–128 (2015). https://doi.org/10.1007/s10969-015-9200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-015-9200-y

Keywords

Navigation