Journal of Structural and Functional Genomics

, Volume 15, Issue 3, pp 83–89 | Cite as

Substrate selectivity of bacterial monoacylglycerol lipase based on crystal structure



Lipases, which are conserved from bacteria to mammals, catalyze the hydrolysis of acylglycerol to free fatty acids and glycerol. Monoacylglycerol lipase (MGL) specifically catalyzes the hydrolysis of monoacylglycerol. Although there have been numerous studies of the structure of lipases, there have been few studies of MGL. Here, we report the crystal structure of authentic MGL isolated from Bacillus sp. H257 (bMGL). The crystal diffracts to 1.96 Å resolution. It belongs to space group P21212, and the unit cell parameters are a = 99.7 Å, b = 106.1 Å and c = 43.0 Å. As in other lipases, three structural features for lipase activity are conserved in bMGL: the glycine-X-serine-X-glycine motif, catalytic triad and cap region. The structure of bMGL appears to be closed, as the cap region covers the active site entrance. The isolated bMGL hydrolyzed 2-AG, a known human MGL-specific substrate. Based on a 2-AG bound model, we discuss the substrate selectivity. The functional and structural features of bMGL provide insight how its substrate selectivity is determined and how specific inhibitors of bacterial MGL could be designed, which may be useful for development of novel antibiotics.


Hydrolase 2-Arachidonoylglycerol Endocannabinoid Conformational change Authentic protein 



We thank the staff at KEK-PF for the data collection. This work was supported in-part by a Strategic Research Foundation Grant-aided Project for Private Universities and Grant-in-Aid for Scientific Research on Innovative Areas, MEXT/JSPS KAKENHI Grant Number: 25121733 of Japan.

Supplementary material

10969_2014_9181_MOESM1_ESM.pdf (609 kb)
Supplementary material 1 (PDF 608 kb)


  1. 1.
    Gupta R, Gupta N, Rathi P (2004) Appl Microbiol Biotechnol 64:763–781PubMedCrossRefGoogle Scholar
  2. 2.
    Karlsson M, Contreras JA, Hellman U, Tornqvist H, Holm C (1997) J Biol Chem 272:27218–27223PubMedCrossRefGoogle Scholar
  3. 3.
    Labar G, Wouters J, Lambert DM (2010) Curr Med Chem 17:2588–2607PubMedCrossRefGoogle Scholar
  4. 4.
    Beopoulos A, Nicaud JM, Gaillardin C (2011) Appl Microbiol Biotechnol 90:1193–1206PubMedCrossRefGoogle Scholar
  5. 5.
    Cotes K, Dhouib R, Douchet I, Chahinian H, de Caro A et al (2007) Biochem J 408:417–427PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Conley AJ, Kabara JJ (1973) Antimicrob Agents Chemother 4:501–506PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Iva Doležálková ZM, Adéla Butkovičová, Rahula Janiš, Leona Buňková (2012) Czech J Food Sci 30:567–572Google Scholar
  8. 8.
    Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP (1972) Antimicrob Agents Chemother 2:23–28PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Wang LL, Johnson EA (1992) Appl Environ Microbiol 58:624–629PubMedCentralPubMedGoogle Scholar
  10. 10.
    Thormar H, Hilmarsson H (2007) Chem Phys Lipids 150:1–11PubMedGoogle Scholar
  11. 11.
    Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES et al (1999) J Neurosci 19:4544–4558PubMedGoogle Scholar
  12. 12.
    Kreitzer AC, Regehr WG (2001) Neuron 29:717–727PubMedCrossRefGoogle Scholar
  13. 13.
    Ohno-Shosaku T, Maejima T, Kano M (2001) Neuron 29:729–738PubMedCrossRefGoogle Scholar
  14. 14.
    Piomelli D, Beltramo M, Glasnapp S, Lin SY, Goutopoulos A et al (1999) Proc Natl Acad Sci USA 96:5802–5807PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Piomelli D, Giuffrida A, Calignano A (2000) Rodriguez de Fonseca F. Trends Pharmacol Sci 21:218–224PubMedCrossRefGoogle Scholar
  16. 16.
    Stella N, Schweitzer P, Piomelli D (1997) Nature 388:773–778PubMedCrossRefGoogle Scholar
  17. 17.
    Comelli F, Giagnoni G, Bettoni I, Colleoni M, Costa B (2007) Br J Pharmacol 152:787–794PubMedCentralPubMedGoogle Scholar
  18. 18.
    Saario SM, Laitinen JT (2007) Basic Clin Pharmacol Toxicol 101:287–293PubMedCrossRefGoogle Scholar
  19. 19.
    Holmquist M (2000) Curr Protein Pept Sci 1:209–235PubMedCrossRefGoogle Scholar
  20. 20.
    Bertrand T, Auge F, Houtmann J, Rak A, Vallee F et al (2010) J Mol Biol 396:663–673PubMedCrossRefGoogle Scholar
  21. 21.
    Schalk-Hihi C, Schubert C, Alexander R, Bayoumy S, Clemente JC et al (2011) Protein Sci 20:670–683PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Yoneda K, Nishimura T, Katunuma N, Imamura S, Nitta K et al (2002) Acta Crystallogr D Biol Crystallogr 58:1232–1233PubMedCrossRefGoogle Scholar
  23. 23.
    Dodson G, Wlodawer A (1998) Trends Biochem Sci 6:347–352Google Scholar
  24. 24.
    Ekici OD, Paetzel M, Dalbey RE (2008) Protein Sci 17:2023–2037PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Rengachari S, Bezerra GA, Riegler-Berket L, Gruber CC, Sturm C et al (2012) Biochim Biophys Acta 1821:1012–1021PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    van Pouderoyen G, Eggert T, Jaeger KE, Dijkstra BW (2001) J Mol Biol 309:215–226PubMedCrossRefGoogle Scholar
  27. 27.
    Imamura S, Kitaura S (2000) J Biochem 127:419–425PubMedCrossRefGoogle Scholar
  28. 28.
    Kitaura S, Suzuki K, Imamura S (2001) J Biochem 129:397–402PubMedCrossRefGoogle Scholar
  29. 29.
    Otwinowski Z, Minor W (1997) In: CW Carter Jr, Sweet RM (eds) Methods in Enzymology, vol 276. Academic Press, New York, pp 307–326Google Scholar
  30. 30.
    Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) Acta Cryst D66:213–221Google Scholar
  31. 31.
    Vagin A, Teplyakov A (2000) Acta Crystallogr D Biol Crystallogr 56:1622–1624PubMedCrossRefGoogle Scholar
  32. 32.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr D Biol Crystallogr 53:240–255PubMedCrossRefGoogle Scholar
  33. 33.
    Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60:2126–2132PubMedCrossRefGoogle Scholar
  34. 34.
    Lovell SC, Davis IW, Arendall WB III, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Rich DC (2002) Proteins Struct Funct Genet 50:437–450CrossRefGoogle Scholar
  35. 35.
    DeLano WL (2002) The PyMOL User’s ManualGoogle Scholar
  36. 36.
    Casida JE, Gulevich AG, Sarpong R, Bunnelle EM (2010) Bioorg Med Chem 18:1942–1947PubMedCrossRefGoogle Scholar
  37. 37.
    Ulloa NM, Deutsch DG (2010) AAPS J 12:197–201PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Carriere F, Withers-Martinez C, van Tilbeurgh H, Roussel A, Cambillau C et al (1998) Biochim Biophys Acta 1376:417–432PubMedCrossRefGoogle Scholar
  39. 39.
    Ogata S, Misumi Y, Tsuji E, Takami N, Oda K et al (1992) Biochemistry 31:2582–2587PubMedCrossRefGoogle Scholar
  40. 40.
    Randhawa ZI, Naggert J, Blacher RW, Smith S (1987) Eur J Biochem 162:577–581PubMedCrossRefGoogle Scholar
  41. 41.
    Blow D (1990) Nature 343:694–695PubMedCrossRefGoogle Scholar
  42. 42.
    Lawson DM, Derewenda U, Serre L, Ferri S, Szittner R et al (1994) Biochemistry 33:9382–9388PubMedCrossRefGoogle Scholar
  43. 43.
    Bryan P, Pantoliano MW, Quill SG, Hsiao HY, Poulos T (1986) Proc Natl Acad Sci USA 83:3743–3745PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Derewenda U, Brzozowski AM, Lawson DM, Derewenda ZS (1992) Biochemistry 31:1532–1541PubMedCrossRefGoogle Scholar
  45. 45.
    Nardini M, Lang DA, Liebeton K, Jaeger KE, Dijkstra BW (2000) J Biol Chem 275:31219–31225PubMedCrossRefGoogle Scholar
  46. 46.
    Lowe ME (2002) J Lipid Res 43:2007–2016PubMedCrossRefGoogle Scholar
  47. 47.
    Kim KK, Song HK, Shin DH, Hwang KY, Suh SW (1997) Structure 5:173–185PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculty of Life SciencesKyoto Sangyo UniversityKyotoJapan

Personalised recommendations