Crystal structure of secretory protein Hcp3 from Pseudomonas aeruginosa

Article

Abstract

The Type VI secretion pathway transports proteins across the cell envelope of Gram-negative bacteria. Pseudomonas aeruginosa, an opportunistic Gram-negative bacterial pathogen infecting humans, uses the type VI secretion pathway to export specific effector proteins crucial for its pathogenesis. The HSI-I virulence locus encodes for several proteins that has been proposed to participate in protein transport including the Hcp1 protein, which forms hexameric rings that assemble into nanotubes in vitro. Two Hcp1 paralogues have been identified in the P. aeruginosa genome, Hsp2 and Hcp3. Here, we present the structure of the Hcp3 protein from P. aeruginosa. The overall structure of the monomer resembles Hcp1 despite the lack of amino-acid sequence similarity between the two proteins. The monomers assemble into hexamers similar to Hcp1. However, instead of forming nanotubes in head-to-tail mode like Hcp1, Hcp3 stacks its rings in head-to-head mode forming double-ring structures.

Keywords

Type VI (T6SS) secretion system Hcp3 Hcp1 X-ray crystallography Structural genomics 

Abbreviations

T6SS

Type VI secretion system

Hcp1

Hemolysin-corregulated protein

PDB

Protein Data Bank

SeMet

Seleno-methionine

SAD

Single-wavelength anomalous diffraction

RMSD

Root mean square deviation

Notes

Acknowledgments

We thank all members of the Structural Biology Center at Argonne National Laboratory and at the Ontario Centre for Structural Proteomics for their help in conducting these experiments. This work was supported by National Institutes of Health grant GM074942 and by the U.S. Department of Energy, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357 and by the US National Science Foundation grant MCB 0231319 (to R.H.W.), and by Genome Canada (through the Ontario Genomics Institute).

References

  1. 1.
    Desvaux M et al (2009) Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17(4):139–145PubMedCrossRefGoogle Scholar
  2. 2.
    Goodman AL et al (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7(5):745–754PubMedCrossRefGoogle Scholar
  3. 3.
    Ventre I et al (2006) Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci USA 103(1):171–176PubMedCrossRefGoogle Scholar
  4. 4.
    Mougous JD et al (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol 9(7):797–803PubMedCrossRefGoogle Scholar
  5. 5.
    Boyer F et al (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10:104PubMedCrossRefGoogle Scholar
  6. 6.
    Mougous JD et al (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312(5779):1526–1530PubMedCrossRefGoogle Scholar
  7. 7.
    Pukatzki S, McAuley SB, Miyata ST (2009) The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 12(1):11–17PubMedCrossRefGoogle Scholar
  8. 8.
    Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11(1):3–8PubMedCrossRefGoogle Scholar
  9. 9.
    Schell MA et al (2007) Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol 64(6):1466–1485PubMedCrossRefGoogle Scholar
  10. 10.
    Pell LG et al (2009) The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci USA 106(11):4160–4165PubMedCrossRefGoogle Scholar
  11. 11.
    Leiman PG et al (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA 106(11):4154–4159PubMedCrossRefGoogle Scholar
  12. 12.
    Ballister ER et al (2008) In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci USA 105(10):3733–3738PubMedCrossRefGoogle Scholar
  13. 13.
    Filloux A (2009) The type VI secretion system: a tubular story. EMBO J 28(4):309–310PubMedCrossRefGoogle Scholar
  14. 14.
    Korolev S et al (2002) Autotracing of Escherichia coli acetate CoA-transferase alpha-subunit structure using 3.4 A MAD and 1.9 A native data. Acta Crystallogr D Biol Crystallogr 58(Pt 12):2116–2121PubMedCrossRefGoogle Scholar
  15. 15.
    Minor W et al (2006) HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes. Acta Crystallogr D Biol Crystallogr 62(Pt 8):859–866PubMedCrossRefGoogle Scholar
  16. 16.
    Terwilliger TC (2003) SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol 374:22–37PubMedCrossRefGoogle Scholar
  17. 17.
    Morris RJ, Perrakis A, Lamzin VS (2003) ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol 374:229–244PubMedCrossRefGoogle Scholar
  18. 18.
    Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1):2126–2132Google Scholar
  19. 19.
    Adams PD et al (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58(Pt 11):1948–1954PubMedCrossRefGoogle Scholar
  20. 20.
    Hooft RW et al (1996) Errors in protein structures. Nature 381(6580):272PubMedCrossRefGoogle Scholar
  21. 21.
    Davis IW et al (2004) MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res 32(Web Server issue):W615–W619Google Scholar
  22. 22.
    Jobichen C et al (2010) Structural basis for the secretion of EvpC: a key type VI secretion system protein from Edwardsiella tarda. PLoS One 5(9):e12910Google Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA)  2011

Authors and Affiliations

  1. 1.Argonne National Laboratory, Biosciences Division, Midwest Center for Structural Genomics and Structural Biology CenterArgonneUSA
  2. 2.University of Toronto, Structural Genomics ConsortiumTorontoCanada
  3. 3.Clinical Genomics Centre/Proteomics, University Health NetworkTorontoCanada
  4. 4.Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoUSA

Personalised recommendations