Assisted assignment of ligands corresponding to unknown electron density

  • T. Andrew Binkowski
  • Marianne Cuff
  • Boguslaw Nocek
  • Changsoo Chang
  • Andrzej Joachimiak


A semi-automated computational procedure to assist in the identification of bound ligands from unknown electron density has been developed. The atomic surface surrounding the density blob is compared to a library of three-dimensional ligand binding surfaces extracted from the Protein Data Bank (PDB). Ligands corresponding to surfaces which share physicochemical texture and geometric shape similarities are considered for assignment. The method is benchmarked against a set of well represented ligands from the PDB, in which we show that we can identify the correct ligand based on the corresponding binding surface. Finally, we apply the method during model building and refinement stages from structural genomics targets in which unknown density blobs were discovered. A semi-automated computational method is described which aims to assist crystallographers with assigning the identity of a ligand corresponding to unknown electron density. Using shape and physicochemical similarity assessments between the protein surface surrounding the density and a database of known ligand binding surfaces, a plausible list of candidate ligands are identified for consideration. The method is validated against highly observed ligands from the Protein Data Bank and results are shown from its use in a high-throughput structural genomics pipeline.


Electron density assignment Function annotation Ligand identification Ligand assignment Protein surfaces 



We would like to thank all members of the Midwest Center for Structural Genomics for helpful discussion and access to crystallographic data. The benchmarking studies were performed on the Argonne Leadership Computing Facilities’ BlueGene/P computing system as part of the Department of Energy’s INCITE program. This work was supported by National Institutes of Health Grants GM62414 and GM074942 and by the US Department of Energy, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357.


  1. 1.
    Diller DJ, Pohl E, Redinbo MR, Hovey BT, Hol WG (1999) Proteins 36(4):512–25CrossRefPubMedGoogle Scholar
  2. 2.
    Oldfield TJ (2001) Acta Crystallographica Section D 57(5):696–705Google Scholar
  3. 3.
    Terwilliger TC (2002) Acta Crystallographica Section D 58(11):1937–1940Google Scholar
  4. 4.
    Zwart PH, Langer GG, Lamzin VS (2004) Acta Crystallographica Section D 60(12 Part 1):2230–2239Google Scholar
  5. 5.
    Aishima J, Russel DS, Guibas LJ, Adams PD, Brunger AT (2005) Acta Crystallogr D Biol Crystallogr 61(Pt 10):1354–1363CrossRefPubMedGoogle Scholar
  6. 6.
    Wlodek S, Skillman AG, Nicholls A (2006) Acta Crystallogr D Biol Crystallogr 62(Pt 7):741–749CrossRefPubMedGoogle Scholar
  7. 7.
    Terwilliger TC, Adams PD, Moriarty NW, Cohn JD (2007) Acta Crystallogr D Biol Crystallogr 63(Pt 1):101–107PubMedGoogle Scholar
  8. 8.
    Laskowski RA, Watson JD, Thornton JM (2005) J Mol Biol 351(3):614–626CrossRefPubMedGoogle Scholar
  9. 9.
    Binkowski TA, Adamian L, Liang J (2003) J Mol Biol 332(2):505–526CrossRefPubMedGoogle Scholar
  10. 10.
    Binkowski TA, Joachimiak A, Liang J (2005) Protein Sci 14(12):2972–2981CrossRefPubMedGoogle Scholar
  11. 11.
    Binkowski TA, Joachimiak A (2008) BMC Struct Biol 8:45CrossRefPubMedGoogle Scholar
  12. 12.
    Stockwell GR, Thornton JM (2006) J Mol Biol 356(4):928–944CrossRefPubMedGoogle Scholar
  13. 13.
    Kahraman A, Morris RJ, Laskowski RA, Thornton JM (2007) J Mol Biol 368(1):283–301CrossRefPubMedGoogle Scholar
  14. 14.
    Binkowski TA, Naghibzadeh S, Liang J (2003) Nucleic Acids Res 31(13):3352–3355CrossRefPubMedGoogle Scholar
  15. 15.
    Wei L, He Y (2006) In: Zha H, Pan Z, Thwaites H, Addison AC, Forte M (eds) Interactive technologies and sociotechnical systems, 12th international conference, VSMM 2006, Xi’an, China, 18–20 October 2006, Proceedings, volume 4270 of Lecture Notes in Computer Science. Springer, pp 263–268Google Scholar
  16. 16.
    Osada R, Funkhouser T, Chazelle B, Dobkin D (2002) ACM Trans Graph 21(4):807–832CrossRefGoogle Scholar
  17. 17.
    Liang J, Edelsbrunner H, Woodward C (1998) Protein Sci 7(9):1884–1897CrossRefPubMedGoogle Scholar
  18. 18.
    Liang J, Edelsbrunner H, Fu P, Sudhakar PV, Subramaniam S (1998) Proteins 33(1):1–17CrossRefPubMedGoogle Scholar
  19. 19.
    Liang J, Edelsbrunner H, Fu P, Sudhakar PV, Subramaniam S (1998) Proteins 33(1):18–29CrossRefPubMedGoogle Scholar
  20. 20.
    Willett P, Barnard J, Downs G (1998) J Chem Inf Comput Sci (38):983–996Google Scholar
  21. 21.
    Rush TSr, Grant JA, Mosyak L, Nicholls A (2005) J Med Chem 48(5):1489–1495CrossRefPubMedGoogle Scholar
  22. 22.
    Nayal M, Honig B (2006) Proteins 63(4):892–906CrossRefPubMedGoogle Scholar
  23. 23.
    Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1):2126–2132CrossRefPubMedGoogle Scholar
  24. 24.
    Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) Bioinformatics 21(20):3940–3941CrossRefPubMedGoogle Scholar
  25. 25.
    Yde CW, Ermakova I, Issinger O-G, Niefind K (2005) J Mol Biol 347(2):399–414CrossRefPubMedGoogle Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  • T. Andrew Binkowski
    • 1
  • Marianne Cuff
    • 1
  • Boguslaw Nocek
    • 1
  • Changsoo Chang
    • 1
  • Andrzej Joachimiak
    • 1
  1. 1.Midwest Center for Structural Genomics (MCSG)Argonne National LaboratoryArgonneUSA

Personalised recommendations