Advertisement

Journal of Structural and Functional Genomics

, Volume 8, Issue 4, pp 173–191 | Cite as

A robust two-step PCR method of template DNA production for high-throughput cell-free protein synthesis

  • Takashi Yabuki
  • Yoko Motoda
  • Kazuharu Hanada
  • Emi Nunokawa
  • Miyuki Saito
  • Eiko Seki
  • Makoto Inoue
  • Takanori Kigawa
  • Shigeyuki Yokoyama
Article

Abstract

A two-step PCR method has been developed for the robust, high-throughput production of linear templates ready for cell-free protein synthesis. The construct made from the cDNA expresses a target protein region with N- and/or C-terminal tags. The procedure consists only of mixing, dilution, and PCR steps, and is free from cloning and purification steps. In the first step of the two-step PCR, a target region within the coding sequence is amplified using two gene-specific forward and reverse primers, which contain the linker sequences and the terminal sequences of the target region. The second PCR concatenates the first PCR product with the N- and C-terminal double-stranded fragments, which contain the linker sequences as well as the sequences for the tag(s) and the initiation and termination, respectively, for T7 transcription and ribosomal translation, and amplifies it with the universal primer. Proteins can be fused with a variety of tags, such as natural poly-histidine, glutathione-S-transferase, maltose-binding protein, and/or streptavidin-binding peptide. The two-step PCR method was successfully applied to 42 human target protein regions with various GC contents (38–77%). The robustness of the two-step PCR method against possible fluctuations of experimental conditions in practical use was explored. The second PCR product was obtained at 60–120 μg/ml, and was used without purification as a template at a concentration of 2–4 μg/ml in an Escherichia coli coupled transcription-translation system. This combination of two-step PCR with cell-free protein synthesis is suitable for the rapid production of proteins in milligram quantities for genome-scale studies.

Keywords

Cell-free protein synthesis Linear template construction Two-step PCR Tagged proteins Human proteins 

Abbreviations

GST

Glutathione-S-transferase

MBP

E. coli maltose binding protein

SBP

Streptavidin binding peptide

NHis

Natural poly-histidine

TEV

Tobacco etch virus

DMSO

Dimethyl sulfoxide

HA

Hemagglutinin

Notes

Acknowledgements

The authors thank Dr. Daisuke Kiga (Tokyo Institute of Technology) and Dr. Yasuaki Kawarasaki (University of Shizuoka) for helpful discussions; Dr. Takayoshi Matsuda (RIKEN) for providing HSQC spectra of Ras mutants; Natsuko Matsuda, Natsumi Suzuki, and Yikkiko Fujikura for their technical assistance; and Tomoko Nakayama and Azusa Ishii for expert secretarial assistance. This work was supported by the RIKEN Structural Genomics/Proteomics Initiative (RSGI), the National Project on Protein Structural and Functional Analysis, Ministry of Education, Culture, Sports, Science and Technology of Japan.

Supplementary material

10969_2007_9038_MOESM1_ESM.pdf (2.4 mb)
(PDF 2480 kb)

References

  1. 1.
    Nameki N, Tochio N, Koshiba S, Inoue M, Yabuki T, Aoki M, Seki E, Matsuda T, Fujikura Y, Saito M, Ikari M, Watanabe M, Terada T, Shirouzu M, Yoshida M, Hirota H, Tanaka A, Hayashizaki Y, Guntert P, Kigawa T, Yokoyama S (2005) Protein Sci 14:756–764PubMedCrossRefGoogle Scholar
  2. 2.
    Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2005) Plant Cell 17:944–956PubMedCrossRefGoogle Scholar
  3. 3.
    Li H, Inoue M, Yabuki T, Aoki M, Seki E, Matsuda T, Nunokawa E, Motoda Y, Kobayashi A, Terada T, Shirouzu M, Koshiba S, Lin YJ, Guntert P, Suzuki H, Hayashizaki Y, Kigawa T, Yokoyama S (2005) J Biomol NMR 32:329–334PubMedCrossRefGoogle Scholar
  4. 4.
    Yabuki T, Kigawa T, Dohmae N, Takio K, Terada T, Ito Y, Laue ED, Cooper JA, Kainosho M, Yokoyama S (1998) J Biomol NMR 11:295–306PubMedCrossRefGoogle Scholar
  5. 5.
    Kurimoto K, Muto Y, Obayashi N, Terada T, Shirouzu M, Yabuki T, Aoki M, Seki E, Matsuda T, Kigawa T, Okumura H, Tanaka A, Shibata N, Kashikawa M, Agata K, Yokoyama S (2005) J Struct Biol 150:58–68PubMedCrossRefGoogle Scholar
  6. 6.
    Arai R, Kukimoto-Niino M, Uda-Tochio H, Morita S, Uchikubo-Kamo T, Akasaka R, Etou Y, Hayashizaki Y, Kigawa T, Terada T, Shirouzu M, Yokoyama S (2005) Protein Sci 14:1888–1893PubMedCrossRefGoogle Scholar
  7. 7.
    Kigawa T, Yamaguchi-Nunokawa E, Kodama K, Matsuda T, Yabuki T, Matsuda N, Ishitani R, Nureki O, Yokoyama S (2002) J Struct Funct Genomics 2:29–35PubMedCrossRefGoogle Scholar
  8. 8.
    Kang SH, Kim DM, Kim HJ, Jun SY, Lee KY, Kim HJ (2005) Biotechnol Prog 21:1412–1419PubMedCrossRefGoogle Scholar
  9. 9.
    Ryabova LA, Desplancq D, Spirin AS, Pluckthun A (1997) Nat Biotechnol 15:79–84PubMedCrossRefGoogle Scholar
  10. 10.
    Klammt C, Schwarz D, Lohr F, Schneider B, Dotsch V, Bernhard F (2006) FEBS J 273:4141–4153PubMedCrossRefGoogle Scholar
  11. 11.
    Yokoyama S, Matsuo Y, Hirota H, Kigawa T, Shirouzu M, Kuroda Y, Kurumizaka H, Kawaguchi S, Ito Y, Shibata T, Kainosho M, Nishimura Y, Inoue Y, Kuramitsu S (2000) Prog Biophys Mol Biol 73:363–376PubMedCrossRefGoogle Scholar
  12. 12.
    Endo Y, Sawasaki T (2004) J Struct Funct Genomics 5:45–57PubMedCrossRefGoogle Scholar
  13. 13.
    Sawasaki T, Ogasawara T, Morishita R, Endo Y (2002) Proc Natl Acad Sci USA 99:14652–14657PubMedCrossRefGoogle Scholar
  14. 14.
    Woodrow KA, Airen IO, Swartz JR (2006) J Proteome Res 5:3288–3300PubMedCrossRefGoogle Scholar
  15. 15.
    Kigawa T, Muto Y, Yokoyama S (1995) J Biomol NMR 6:129–134PubMedCrossRefGoogle Scholar
  16. 16.
    Nakai K, Horton P (1999) Trends Biochem Sci 24:34–36PubMedCrossRefGoogle Scholar
  17. 17.
    Dougherty WG, Cary SM, Parks TD (1989) Virology 171:356–364PubMedCrossRefGoogle Scholar
  18. 18.
    Chaga G, Bochkariov DE, Jokhadze GG, Hopp J, Nelson P (1999) J Chromatogr A 864:247–256PubMedCrossRefGoogle Scholar
  19. 19.
    Hirota Y, Katsumata A, Takeya T (1990) Nucleic Acids Res 18:6432PubMedCrossRefGoogle Scholar
  20. 20.
    Keefe AD, Wilson DS, Seelig B, Szostak JW (2001) Protein Expr Purif 23:440–446PubMedCrossRefGoogle Scholar
  21. 21.
    Matsuda T, Kigawa T, Koshiba S, Inoue M, Aoki M, Yamasaki K, Seki M, Shinozaki K, Yokoyama S (2006) J Struct Funct Genomics 7:93–100PubMedCrossRefGoogle Scholar
  22. 22.
    Lin-Goerke JL, Robbins DJ, Burczak JD (1997) Biotechniques 23:409–412PubMedGoogle Scholar
  23. 23.
    Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama S (1999) FEBS Lett 442:15–19PubMedCrossRefGoogle Scholar
  24. 24.
    Nakano H, Kobayashi K, Ohuchi S, Sekiguchi S, Yamane T (2000) J Biosci Bioeng 90:456–458PubMedGoogle Scholar
  25. 25.
    Esposito D, Chatterjee DK (2006) Curr Opin Biotechnol 17:353–358PubMedCrossRefGoogle Scholar
  26. 26.
    Labaer J, Ramachandran N (2005) Curr Opin Chem Biol 9:14–19PubMedCrossRefGoogle Scholar
  27. 27.
    Griffiths AD, Tawfik DS (2006) Trends Biotechnol 24:395–402PubMedCrossRefGoogle Scholar
  28. 28.
    Waldo GS, Standish BM, Berendzen J, Terwilliger TC (1999) Nat Biotechnol 17:691–695PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Takashi Yabuki
    • 1
  • Yoko Motoda
    • 1
  • Kazuharu Hanada
    • 1
  • Emi Nunokawa
    • 1
  • Miyuki Saito
    • 1
  • Eiko Seki
    • 1
  • Makoto Inoue
    • 1
  • Takanori Kigawa
    • 1
    • 2
  • Shigeyuki Yokoyama
    • 1
    • 3
  1. 1.Protein Research GroupRIKEN Genomic Sciences CenterTsurumiJapan
  2. 2.Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and EngineeringTokyo Institute of TechnologyMidori-kuJapan
  3. 3.Department of Biophysics and Biochemistry, Graduate School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations