Skip to main content
Log in

Theoretical and experimental investigations of Sc-47 production at Egyptian Second Research Reactor (ETRR-2)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The present work was planned to evaluate the reactor production of 47Sc from calcium and titanium targets at Egyptian Second Research Reactor (ETRR-2) based on 46Ca (n, γ) 47Ca \(\mathop{\longrightarrow}\limits^{\beta - }\) 47Sc and 47Ti (n, p) 47Sc nuclear ractions, respectively. A comparison between the two routs in terms of specific activity of 47Sc and co-produced radioimpurities was carried out. The MCNPX2.7.0 code was used to estimate the levels of all radionuclides produced throughout as well as after the irradiation of 46CaCO3, natTiO2 and 47TiO2 targets. The computational results were verified by experimental measurements, and a good aggrement was found between both. Additionally, our results showed that 47Sc production is greatly preferred from titanium route rather than calcium route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig. 4

Similar content being viewed by others

References

  1. Stöcklin G, Qaim SM, Rösch F (1995) The impact of radioactivity on medicine. Radiochim Acta 70(71):249–272

    Google Scholar 

  2. Qaim SM, Scholten B, Neumaier B (2018) New developments in the production of theranostic pairs of radionuclides. J Radioanal Nucl Chem 318(3):1493–1509

    Article  CAS  Google Scholar 

  3. Srivastava SC (2011) Paving the way to personalized medicine: production of some theragnostic radionuclides at Brookhaven National Laboratory. Radiochim Acta 99(10):635–640

    Article  CAS  Google Scholar 

  4. Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schoenberger S, Gonzalez-Carmona M, Essler M (2017) Theranostics in nuclear medicine practice. Oncotargets Therapy 10:4821

    Article  Google Scholar 

  5. Chakravarty R, Chakraborty S, Ram R, Dash A (2017) An electroamalgamation approach to separate 47Sc from neutron-activated 46Ca target for use in cancer theranostics. Sep Sci Technol 52(14):2363–2371

    Article  CAS  Google Scholar 

  6. Herzog H, Rosch F, Stocklin G, Lueders C, Qaim SM, Feinendegen LE (1993) Measurement of pharmacokinetics of Yttrium-86 radiopharmaceuticals with PET and radiation. J Nucl Med 34:2222–2226

    PubMed  CAS  Google Scholar 

  7. Rösch F, Herzog H, Qaim SM (2017) The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 10(2):56

    Article  CAS  Google Scholar 

  8. Qaim SM (2019) Theranostic radionuclides: recent advances in production methodologies. J Radioanal Nucl Chem 322(3):1257–1266

    Article  CAS  Google Scholar 

  9. Gizawy MA, Mohamed NM, Aydia MI, Soliman MA, Shamsel-Din HA (2020) Feasibility study on production of Sc-47 from neutron irradiated Ca target for cancer theranostics applications. Radiochim Acta 108(3):207–215

    Article  CAS  Google Scholar 

  10. Pietrelli L, Mausner LF, Kolsky KL (1992) Separation of carrier-free 47Sc from titanium targets. J Radioanal Nucl Chem 157(2):335–345

    Article  CAS  Google Scholar 

  11. Majkowska-pilip A, Bilewicz A (2011) Macrocyclic complexes of scandium radionuclides as precursors for diagnostic and therapeutic radiopharmaceuticals. J Inorg Biochem 105(2):331

    Article  CAS  Google Scholar 

  12. Müller C, Bunka M, Haller S, Köster U, Groehn V, Bernhardt P, Schibli R (2014) Promising prospects for 44Sc-/47Sc-based theragnostics: application of 47Sc for radionuclide tumor therapy in mice. J Nucl Med 55(10):1658–1664

    Article  CAS  Google Scholar 

  13. Domnanich KA, Müller C, Benešová M, Dressler R, Haller S, Köster U, Ponsard B, Schibli R, Türler A, van der Meulen NP (2017) 47Sc as useful β-emitter for the radiotheragnostic paradigm: a comparative study of feasible production routes. EJNMMI Radiopharm Chem 2(1):5

    Article  Google Scholar 

  14. Gizawy MA, Aydia MI, Monem IMA, Shamsel-Din HA, Siyam T (2019) Radiochemical separation of reactor produced Sc-47 from natural calcium target using poly(acrylamide-acrylic acid)/multi-walled carbon nanotubes composite. Appl Radiat Isot 150:87–94

    Article  CAS  Google Scholar 

  15. Yagi M, Kondo K (1977) Preparation of carrier-free 47Sc by the 48Ti(γ, p) reaction. Int J Appl Radiat Isot 28:463–468

    Article  CAS  Google Scholar 

  16. Kopecky P, Szelecsényi F, Molnair T, Mikecz P, Tárkányi F (1993) Excitation functions of (p, xn) reactions on natTi: monitoring of bombarding proton beams. Appl Radiat Isot 44:687

    Article  CAS  Google Scholar 

  17. Kolsky KL, Joshi V, Mausner LF, Srivastava SC (1998) Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. Appl Radiat Isot 49(12):1541–1549

    Article  CAS  Google Scholar 

  18. Mausner LF, Kolsky KL, Joshi V, Srivastava SC (1998) Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot 49:285–294

    Article  CAS  Google Scholar 

  19. Bokhari TH, Mushtaq A, Khan IU (2010) Separation of no-carrier-added radioactive scandium from neutron irradiated titanium. J Radioanal Nucl Chem 283(2):389–393

    Article  CAS  Google Scholar 

  20. Bartoś B, Majkowska A, Kasperek A, Krajewski S, Bilewicz A (2012) New separation method of no-carrier added 47Sc from titanium targets. Radiochim Acta 100:457–461

    Article  CAS  Google Scholar 

  21. Mamtimin M, Harmon F, Starovoitova VN (2015) Sc-47 production from titanium targets using electron linacs. Appl Radiat Isot 102:1–4

    Article  CAS  Google Scholar 

  22. Starovoitova VN, Cole PL, Grimm TL (2015) Accelerator-based photoproduction of promising beta-emitters 67Cu and 47Sc. J Radioanal Nucl Chem 305(1):127–132

    Article  CAS  Google Scholar 

  23. Rane S, Harris JT, Starovoitova VN (2015) 47Ca production for 47Ca/47Sc generator system using electron linacs. Appl Radiat Isot 97:188–192

    Article  CAS  Google Scholar 

  24. Deilami-nezhad L, Moghaddam-Banaem L, Sadeghi M, Asgari M (2016) Production and purification of Scandium-47: a potential radioisotope for cancer theranostics. Appl Radiat Isot 118:124–130

    Article  CAS  Google Scholar 

  25. Rotsch DA, Brown MA, Nolen JA, Brossard T, Henning WF, Chemerisov SD, Greene J (2018) Electron linear accelerator production and purification of scandium-47 from titanium dioxide targets. Appl Radiat Isot 131:77–82

    Article  CAS  Google Scholar 

  26. Gizawy MA, Shamsel-Din HA, Abdelmonem IM, Ibrahim MI, Mohamed LA, Metwally E (2020) Synthesis of chitosan-acrylic acid/multiwalled carbon nanotubes composite for theranostic 47Sc separation from neutron irradiated titanium target. Int J Biol Macromol 163:79–86

    Article  CAS  Google Scholar 

  27. Pelowitz DB (2011) MCNPX user’s manual version 2.7. 0-LA-CP-11-00438. Los Alamos National Laboratory

  28. Hosseini SF, Sadeghi M, Aboudzadeh MR (2017) Theoretical assessment and targeted modeling of TiO2 in reactor towards the scandium radioisotopes estimation. Appl Radiat Isot 127:116–121

    Article  CAS  Google Scholar 

  29. Mandour A, Megahid RM, Hassan MH, Abd El Salam TM (2007) Characterization and application of the thermal neutron radiography beam in the Egyptian Second Experimental and Training Research Reactor (ETRR-2). Science and Technology of Nuclear Installations

  30. Hassanain AM, Mohamed NM, Aly MN, Badawi AA, Gaheen MA (2011) Neutron flux characterization for radioisotope production at ETRR-2. World Acad Sci Eng Technol Int J Math Comput Phys Electr Comput Eng 5(1):36–40

    Google Scholar 

  31. Mohamed NM, Gaheen MA (2016) Design of fast neutron channels for topaz irradiation. Nucl Eng Des 310:429–437

    Article  CAS  Google Scholar 

  32. Lamarch JR (1983) Introduction to nuclear engineering. Addison-Wesley, Berlin

    Google Scholar 

  33. Mohamed NMA (2017) Accurate corrections of HPGe detector efficiency for NAA samples. J Radiat Nucl Appl 2:37–43

    Article  Google Scholar 

  34. Soliman MA, Mohamed NM, Takamiya K, Sekimoto S, Inagaki M, Oki Y, Ohtsuki T (2020) Estimation of 47 Sc and 177 Lu production rates from their natural targets in Kyoto University Research Reactor. J Radioanal Nucl Chem 2020:1–9

    Google Scholar 

  35. Loveless CS, Blanco JR, Diehl GL, Elbahrawi RT, Carzaniga TS, Braccini S, Lapi SE (2020) Cyclotron production and separation of scandium radionuclides from natural titanium metal and titanium dioxide targets. J Nucl Med 62:131–136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the IAEA Research Contract No: 20548 in the form of IAEA CRP on ‘‘Therapeutic Radiopharmaceuticals Labelled with New Emerging Radionuclides “(67Cu, 186Re, 47Sc)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Gizawy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gizawy, M.A., Mohamed, N. Theoretical and experimental investigations of Sc-47 production at Egyptian Second Research Reactor (ETRR-2). J Radioanal Nucl Chem 328, 1–7 (2021). https://doi.org/10.1007/s10967-021-07620-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07620-3

Keywords

Navigation