A facile method for preparing three-dimensional graphene nanoribbons aerogel for uranium(VI) and thorium(IV) adsorption


An three-dimensional (3D) porous structure graphene oxide nanoribbons (GONRs) aerogel has been prepared via hydrothermal method to overcome the challenges of solid–liquid separation for powdered carbon-based nanomaterials. GONRs aerogel showed low density, good mechanical strength and easy separation from water. Uranium(VI) and thorium(IV) adsorption by GONRs aerogel was investigated by batch experiments, demonstrating their strongly pH-dependent, spontaneous and endothermic adsorption processes. GONRs aerogel exhibited the maximum U(VI)- and Th(IV)-uptake capacity (430.6 and 380.4 mg g−1, respectively) due to its large specific area (597.4 m2 g−1) and abundant oxygen-containing groups. This work suggests that GONRs aerogel has great potential for treatment of uranium and thorium-containing effluents.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Gui W, Zhang H, Liu Q, Zhu X, Yang Y (2014) Recovery of Th(IV) from acid leaching solutions of bastnaesite at low concentrations. Hydrometallurgy 147–148:157–163

    Article  CAS  Google Scholar 

  2. 2.

    Anirudhan TS, Suchithra PS, Senan P, Tharun AR (2012) Kinetic and equilibrium profiles of adsorptive recovery of thorium(IV) from aqueous solutions using poly(methacrylic acid) grafted cellulose/bentonite superabsorbent composite. Ind Eng Chem Res 51:4825–4836

    CAS  Article  Google Scholar 

  3. 3.

    Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination-an overview. Talanta 68:1047–1064

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Hao J-H, Wang Z-J, Wang Y-F, Yin Y-H, Jiang R, Jin Q-H (2015) Adsorption of alkali and alkaline-earth metal atoms on the reconstructed graphene-like BN single sheet. Solid State Sci 50:69–73

    CAS  Article  Google Scholar 

  5. 5.

    Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X (2018) Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47:2322–2356

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Sharma P, Tomar R (2008) Synthesis and application of an analogue of mesolite for the removal of uranium (VI), thorium (IV), and europium (III) from aqueous waste. Microporous Mesoporous Mater 116:641–652

    CAS  Article  Google Scholar 

  7. 7.

    Humelnicu D, Blegescu C, Ganju D (2014) Removal of uranium (VI) and thorium (IV) ions from aqueous solutions by functionalized silica: kinetic and thermodynamic studies. J Radioanal Nucl Ch 299:1183–1190

    CAS  Article  Google Scholar 

  8. 8.

    Liu L, Liu S, Peng H, Yang Z, Tang A (2020) Surface charge of mesoporous calcium silicate and its adsorption characteristics for heavy metal ions. Solid State Sci 99:106072

    CAS  Article  Google Scholar 

  9. 9.

    Li F, Yang Z, Weng H, Chen G, Lin M, Zhao C (2018) High efficient separation of U(VI) and Th(IV) from rare earth elements in strong acidic solution by selective sorption on phenanthroline diamide functionalized graphene oxide. Chem Eng J 332:340–350

    CAS  Article  Google Scholar 

  10. 10.

    Jiang D, Liu L, Pan N, Yang F, Li S, Wang R, Wyman IW, Jin Y, Xia C (2015) The separation of Th(IV)/U(VI) via selective complexation with graphene oxide. Chem Eng J 271:147–154

    CAS  Article  Google Scholar 

  11. 11.

    Mahanty B, Mohapatra PK (2020) Highly efficient separation of thorium from uranium in nitric acid feeds by solid phase extraction using Aliquat 336. Sep Purif Technol 237:116318

    CAS  Article  Google Scholar 

  12. 12.

    Higginbotham AL, Kosynkin DV, Sinitskii A, Sun Z, Tour JM (2010) Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4:2059–2069

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Long D, Li W, Qiao W, Miyawaki J, Yoon SH, Mochida I, Ling L (2011) Partially unzipped carbon nanotubes as a superior catalyst support for PEM fuel cells. Chem Commun 47:9429–9431

    CAS  Article  Google Scholar 

  14. 14.

    Xie L, Wang H, Jin C, Wang X, Jiao L, Suenaga K, Dai H (2011) Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties. J Am Chem Soc 133:10394–10397

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Wang Y, Wang Z, Gu Z, Yang J, Liao J, Yang Y, Liu N, Tang J (2015) Uranium(VI) sorption on graphene oxide nanoribbons derived from unzipping of multiwalled carbon nanotubes. J Radioanal Nucl Ch 304:1329–1337

    CAS  Article  Google Scholar 

  16. 16.

    Wang Y, Wang Z, Ang R, Yang J, Liu N, Liao J, Yang Y, Tang J (2015) Synthesis of amidoximated graphene oxide nanoribbons from unzipping of multiwalled carbon nanotubes for selective separation of uranium(VI). RSC Adv 5:89309–89318

    CAS  Article  Google Scholar 

  17. 17.

    Xiu T, Liu Z, Wang Y, Wu P, Du Y, Cai Z (2019) Thorium adsorption on graphene oxide nanoribbons/manganese dioxide composite material. J Radioanal Nucl Ch 319:1059–1067

    CAS  Article  Google Scholar 

  18. 18.

    Wu P, Wang Y, Li Y, Hu X, Xiu T, Yuan D, Liu Y, Wu Z, Liu Z (2019) Adsorption of Th(IV) from aqueous solution by the graphene oxide nanoribbons/chitosan composite material. J Radioanal Nucl Ch 322:553–559

    CAS  Article  Google Scholar 

  19. 19.

    Wu P, Wang Y, Hu X, Yuan D, Liu Y, Liu Z (2019) Synthesis of magnetic graphene oxide nanoribbons composite for the removal of Th(IV) from aqueous solutions. J Radioanal Nucl Ch 319:1111–1118

    CAS  Article  Google Scholar 

  20. 20.

    Zong P, Wang S, Zhao Y, Wang H, Pan H, He C (2013) Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem Eng J 220:45–52

    CAS  Article  Google Scholar 

  21. 21.

    El-Maghrabi HH, Abdelmaged SM, Nada AA, Zahran F, El-Wahab SA, Yahea D, Hussein GM, Atrees MS (2017) Magnetic graphene based nanocomposite for uranium scavenging. J Hazard Mater 322:370–379

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Xiao J, Song W, Hu R, Chen L, Tian X (2019) One-step arc-produced amino-functionalized graphite-encapsulated magnetic nanoparticles for the efficient removal of radionuclides. ACS Appl Nano Mater 2:385–394

    CAS  Article  Google Scholar 

  23. 23.

    Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG (2007) Carbon Nanotube Aerogels. Adv Mater 19:661–664

    CAS  Article  Google Scholar 

  24. 24.

    Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25:2219–2223

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Sui Z, Meng Q, Zhang X, Ma R, Cao B (2012) Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem 22:8767–8771

    CAS  Article  Google Scholar 

  26. 26.

    Zhao D, Wang Y, Zhao S, Wakeel M, Wang Z, Shaikh RS, Hayat T, Chen C (2019) A simple method for preparing ultra-light graphene aerogel for rapid removal of U(VI) from aqueous solution. Environ Pollut 251:547–554

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Zhang Z, Dong Z, Wang X, Dai Y, Cao X, Wang Y, Hua R, Feng H, Chen J, Liu Y (2019) Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U (VI): batch and fixed-bed column studies. Chem Eng J 370:1376–1387

    CAS  Article  Google Scholar 

  28. 28.

    He Y-R, Li S-C, Li X-L, Yang Y, Tang A-M, Du L, Tan Z-Y, Zhang D, Chen H-B (2018) Graphene (rGO) hydrogel: a promising material for facile removal of uranium from aqueous solution. Chem Eng J 338:333–340

    CAS  Article  Google Scholar 

  29. 29.

    Wang Q, Wang X, Chai Z, Hu W (2013) Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications. Chem Soc Rev 42:8821–8834

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Zhao F, Wang L, Zhao Y, Qu L, Dai L (2017) Graphene oxide nanoribbon assembly toward moisture-powered information storage. Adv Mater 29:1604972

    Article  CAS  Google Scholar 

  31. 31.

    Shan C, Zhao W, Lu XL, O’Brien DJ, Li Y, Cao Z, Elias AL, Cruz-Silva R, Terrones M, Wei B (2013) Three-dimensional nitrogen-doped multiwall carbon nanotube sponges with tunable properties. Nano Lett 13:5514–5520

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Wu X-L, Wen T, Guo H-L, Yang S, Wang X, Xu A-W (2013) Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7:3589–3597

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Zhu X, Yang C, Wu P, Ma Z, Shang Y, Bai G, Liu X, Chang G, Li N, Dai J, Wang X, Zhang H (2020) Precise control of versatile microstructure and properties of graphene aerogel: Via freezing manipulation. Nanoscale 12:4882–4894

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Shao D, Jiang Z, Wang X, Li J, Meng Y (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution. J Phys Chem B 113:860–864

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Li Z, Chen F, Yuan L, Liu Y, Zhao Y, Chai Z, Shi W (2012) Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem Eng J 210:539–546

    CAS  Article  Google Scholar 

  37. 37.

    Liao Y, Wang M, Chen D (2019) Electrosorption of uranium (VI) by highly porous phosphate-functionalized graphene hydrogel. Appl Surf Sci 484:83–96

    CAS  Article  Google Scholar 

  38. 38.

    Ding H, Zhang X, Yang H, Luo X, Lin X (2019) Highly efficient extraction of thorium from aqueous solution by fungal mycelium-based microspheres fabricated via immobilization. Chem Eng J 368:37–50

    CAS  Article  Google Scholar 

  39. 39.

    Chandrasekar A, Suresh A, Joshi M, Sundararajan M, Ghanty TK, Sivaraman N (2019) Highly selective separations of U(VI) from a Th(IV) matrix by branched butyl phosphates: Insights from solvent extraction, chromatography and quantum chemical calculations. Sep Purif Technol 210:182–194

    CAS  Article  Google Scholar 

  40. 40.

    Fasfous II, Dawoud JN (2012) Uranium (VI) sorption by multiwalled carbon nanotubes from aqueous solution. Appl Surf Sci 259:433–440

    CAS  Article  Google Scholar 

  41. 41.

    Chen J-H, Lu D-Q, Chen B, Yang P-K (2012) Removal of U(VI) from aqueous solutions by using MWCNTs and chitosan modified MWCNTs. J Radioanal Nucl Ch 295:2233–2241

    Article  CAS  Google Scholar 

  42. 42.

    Schierz A, Zanker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157:1088–1094

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Wang Y, Gu Z, Yang J, Liao J, Yang Y, Liu N, Tang J (2014) Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium(VI). Appl Surf Sci 320:10–20

    CAS  Article  Google Scholar 

  44. 44.

    Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J, Shao D, Wang X (2012) Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41:6182–6188

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Shao D, Hou G, Li J, Wen T, Ren X, Wang X (2014) PANI/GO as a super adsorbent for the selective adsorption of uranium(VI). Chem Eng J 255:604–612

    CAS  Article  Google Scholar 

  46. 46.

    Chen C, Li X, Zhao D, Tan X, Wang X (2007) Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes. Colloids Surf A: Physicochem Eng Asp 302:449–454

    CAS  Article  Google Scholar 

  47. 47.

    Deb AKS, Mohanty BN, Ilaiyaraja P, Sivasubramanian K, Venkatraman B (2012) Adsorptive removal of thorium from aqueous solution using diglycolamide functionalized multi-walled carbon nanotubes. J Radioanal Nucl Ch 295:1161–1169

    Article  CAS  Google Scholar 

  48. 48.

    Pan N, Deng J, Guan D, Jin Y, Xia C (2013) Adsorption characteristics of Th(IV) ions on reduced graphene oxide from aqueous solutions. Appl Surf Sci 287:478–483

    CAS  Article  Google Scholar 

  49. 49.

    Pan N, Guan D, He T, Wang R, Wyman I, Jin Y, Xia C (2013) Removal of Th4+ ions from aqueous solutions by graphene oxide. J Radioanal Nucl Ch 298:1999–2008

    CAS  Article  Google Scholar 

  50. 50.

    Bai Z-Q, Li Z-J, Wang C-Z, Yuan L-Y, Liu Z-R, Zhang J, Zheng L-R, Zhao Y-L, Chai Z-F, Shi W-Q (2014) Interactions between Th(IV) and graphene oxide: experimental and density functional theoretical investigations. RSC Adv 4:3340–3347

    CAS  Article  Google Scholar 

  51. 51.

    Xu H, Li G, Li J, Chen C, Ren X (2016) Interaction of Th(IV) with graphene oxides: Batch experiments, XPS investigation, and modeling. J Mol Liq 213:58–68

    CAS  Article  Google Scholar 

Download references


We appreciate the financial support from Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation (East China University of Technology) (JXMS202015).

Author information



Corresponding author

Correspondence to Yun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., He, H., Liu, Z. et al. A facile method for preparing three-dimensional graphene nanoribbons aerogel for uranium(VI) and thorium(IV) adsorption. J Radioanal Nucl Chem (2021). https://doi.org/10.1007/s10967-021-07619-w

Download citation


  • Adsorption
  • U(VI)
  • Th(IV)
  • Three dimension
  • Graphene nanoribbons aerogel