Skip to main content
Log in

Experimental investigation of uranium extraction from the industrial nuclear waste treatment plant by tri-butyl-phosphate

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

With the main object of reducing nuclear waste materials, in this study, numerous influential factors were optimized to find the best conditions for uranium extraction from a nuclear waste using Tri-butyl-phosphate extractant. The optimum dissolution point of solid waste was obtained at 0.01 mol L−1 nitric acid, ambient temperature, and pH value of 5.7. The results showed that the extraction efficiency is increased by increasing the acid concentration, extractant concentration, mixing time, and organic to aqueous phase ratio. The phosphoric acid was selected as the most suitable option with an extraction efficiency of 76% and a distribution coefficient of 3.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Charles F, Kutscher JBM, Kreith F (2018) Principles of sustainable energy systems, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  2. Diehl P (2011) Uranium mining and milling wastes: an introduction. World Information Service on Energy

  3. Durazzo M, Saliba-Silva A, Martins I, de Carvalho EU, Riella H (2017) Manufacturing low enriched uranium metal by magnesiothermic reduction of UF4. Ann Nucl Energy 110:874–885. https://doi.org/10.1016/j.anucene.2017.07.033

    Article  CAS  Google Scholar 

  4. Hemmati A, Torab-Mostaedi M, Shirvani M, Ghaemi A (2015) A study of drop size distribution and mean drop size in a perforated rotating disc contactor (PRDC). Chem Eng Res Des 96:54–62. https://doi.org/10.1016/j.cherd.2015.02.005

    Article  CAS  Google Scholar 

  5. Hall GB, Asmussen SE, Casella AJ (2019) Solvent extraction in the nuclear fuel cycle. In: Engineering separations unit operations for nuclear processing, pp 145–189. https://doi.org/10.1201/9780429466748-4

  6. Asadollahzadeh M, Torkaman R, Torab-Mostaedi M, Hemmati A, Ghaemi A (2020) Efficient recovery of neodymium and praseodymium from NdFeB magnet-leaching phase with and without ionic liquid as a carrier in the supported liquid membrane. Chem Pap. https://doi.org/10.1007/s11696-020-01240-z

    Article  Google Scholar 

  7. Torkaman R, Moosavian M, Safdari J, Torab-Mostaedi M (2013) Synergistic extraction of gadolinium from nitrate media by mixtures of bis (2, 4, 4-trimethylpentyl) dithiophosphinic acid and di-(2-ethylhexyl) phosphoric acid. Ann Nucl Energy 62:284–290. https://doi.org/10.1016/j.anucene.2013.06.028

    Article  CAS  Google Scholar 

  8. Keshavarz M, Ghaemi A, Shirvani M (2015) Simulation of extraction of phenol from wastewater by TBP solvent using neural network. Farayandno 10(51):69–85

    Google Scholar 

  9. Ghaemi A, Rahmati A (2012) Experimental investigation of uranium recovery from fluorination waste using solvent extraction technique. Int J Sep Environ Sci 1(2):79–92

    Google Scholar 

  10. Rahmati A, Ghaemi A, Samadfam M (2011) Uranium recovery from solid waste of a uranium conversion facility’s fluorination reactor by using solvent extraction method. J Sep Transp Phenom (J School Eng) 1:97–107

    Google Scholar 

  11. Prakash S, Kumar V, Durani S, Thangavel S (2018) Spectrophotometric Determination of Uranium without solvent extraction in Geomaterials using Arsenazo-III in presence of EDTA. Int J Sci Res Chem 3(5):35–38

    Google Scholar 

  12. Fries B, Marie C, Pacary V, Mokhtari H, Berthon-Nigond L, Sorel C, Charbonnel M Understanding of uranium extraction mechanisms from phosphoric and sulfuric media using DEHCNPB. In: ISEC 2017-The 21st international solvent extraction conference, 2017. ISEC 2017

  13. Palattao BL, Ramirez JD, Tabora EU, Marcelo EA, Vargas EP, Intoy SP, Diwa RR, Reyes RY (2018) Recovery of uranium from Philippine wet phosphoric Acid using D2EHPA-TOPO solvent extraction. Philippine J Sci 147:275–284

    Google Scholar 

  14. Wu S, Wang L, Zhang P, El-Shall H, Moudgil B, Huang X, Zhao L, Zhang L, Feng Z (2018) Simultaneous recovery of rare earths and uranium from wet process phosphoric acid using solvent extraction with D2EHPA. Hydrometallurgy 175:109–116. https://doi.org/10.1016/j.hydromet.2017.10.025

    Article  CAS  Google Scholar 

  15. Sato T, Watanabe H, Suzuki H (1990) Liquid–liquid extraction of molybdenum (VI) from aqueous acid solutions by TBP and TOPO. Hydrometallurgy 23(2–3):297–308. https://doi.org/10.1016/0304-386X(90)90011-P

    Article  CAS  Google Scholar 

  16. Zou L, Chen J, Pan X (1998) Solvent extraction of rhodium from aqueous solution of Rh (III)–Sn (II)–Cl−system by TBP. Hydrometallurgy 50(3):193–203. https://doi.org/10.1016/S0304-386X(98)00017-6

    Article  CAS  Google Scholar 

  17. Saji J, Reddy M (2001) Liquid–liquid extraction separation of iron (III) from titania wastes using TBP–MIBK mixed solvent system. Hydrometallurgy 61(2):81–87. https://doi.org/10.1016/S0304-386X(01)00146-3

    Article  CAS  Google Scholar 

  18. Rout A, Venkatesan K, Srinivasan T, Rao PV (2009) Extraction of americium (III) from nitric acid medium by CMPO-TBP extractants in ionic liquid diluent. Radiochim Acta 97(12):719–725. https://doi.org/10.1524/ract.2009.1975

    Article  CAS  Google Scholar 

  19. Taghizadeh M, Ghanadi M, Zolfonoun E (2011) Separation of zirconium and hafnium by solvent extraction using mixture of TBP and Cyanex 923. J Nucl Mater 412(3):334–337. https://doi.org/10.1016/j.jnucmat.2011.03.033

    Article  CAS  Google Scholar 

  20. Rout A, Venkatesan K, Srinivasan T, Rao PV (2011) Extraction and third phase formation behavior of Eu (III) in CMPO–TBP extractants present in room temperature ionic liquid. Sep Purif Technol 76(3):238–243. https://doi.org/10.1016/j.seppur.2010.10.009

    Article  CAS  Google Scholar 

  21. Cheraghi A, Ardakani MS, Alamdari EK, Fatmesari DH, Darvishi D, Sadrnezhaad SK (2015) Thermodynamics of vanadium (V) solvent extraction by mixture of D2EHPA and TBP. Int J Miner Process 138:49–54. https://doi.org/10.1016/j.minpro.2015.03.011

    Article  CAS  Google Scholar 

  22. Ansari S, Kumari N, Raut D, Kandwal P, Mohapatra P (2016) Comparative dispersion-free solvent extraction of Uranium (VI) and Thorium (IV) by TBP and dialkyl amides using a hollow fiber contactor. Sep Purif Technol 159:161–168. https://doi.org/10.1016/j.seppur.2016.01.004

    Article  CAS  Google Scholar 

  23. Younes A, Alliot C, Mokili B, Deniaud D, Montavon G, Champion J (2017) Solvent extraction of polonium (IV) with tributylphosphate (TBP). Solvent Extr Ion Exch 35(2):77–90. https://doi.org/10.1080/07366299.2017.1279917

    Article  CAS  Google Scholar 

  24. Cheema HA, Ilyas S, Masud S, Muhsan MA, Mahmood I, Lee J (2018) Selective recovery of rhenium from molybdenite flue-dust leach liquor using solvent extraction with TBP. Sep Purif Technol 191:116–121. https://doi.org/10.1016/j.seppur.2017.09.021

    Article  CAS  Google Scholar 

  25. Shi D, Li L, Li J, Ji L, Song F, Peng X, Zhang L, Zhang Y, Li H, Song X (2019) Extraction of lithium from salt lake brine using N523-TBP mixture system. J Salt Lake Res. https://doi.org/10.12119/j.yhyj.201902009

    Article  Google Scholar 

  26. Durain J, Bourgeois D, Bertrand M, Meyer D (2019) Comprehensive studies on third phase formation: application to U (VI)/Th (IV) mixtures extracted by TBP in N-dodecane. Solvent Extr Ion Exch 37(5):328–346. https://doi.org/10.1080/07366299.2019.1656853

    Article  CAS  Google Scholar 

  27. Turanov A, Karandashev V, Boltoeva M (2020) Solvent extraction of intra-lanthanides using a mixture of TBP and TODGA in ionic liquid. Hydrometallurgy 195:105367. https://doi.org/10.1016/j.hydromet.2020.105367

    Article  CAS  Google Scholar 

  28. Yi X, Huo G, Tang W (2020) Removal of Fe (III) from Ni-Co-Fe chloride solutions using solvent extraction with TBP. Hydrometallurgy 192:105265. https://doi.org/10.1016/j.hydromet.2020.105265

    Article  CAS  Google Scholar 

  29. Duff MC, Hunter DB, Bertsch PM, Amrhein C (1999) Factors influencing uranium reduction and solubility in evaporation pond sediments. Biogeochemistry 45(1):95–114. https://doi.org/10.1023/A:1006185812588

    Article  CAS  Google Scholar 

  30. Gilani HG, Ghaemi A, Pirasteh M (2012) Studies on uranium recovery from acidic waste using tri-n-octyl amine by solvent extraction. Polym Res J 6(3):211–224

    CAS  Google Scholar 

  31. Ghaemi A, Rahmati A (2013) Uranium extraction from solid waste as nitrate complex with D2EHPA, TOPO and their synergistic mixture. Iran J Chem Eng 10(4):28–42

    Google Scholar 

  32. Kumar S, Kumar B, Sinha PK, Sampath M, Sivakumar D, Mudali UK (2017) Extraction of uranium from simulated highly active feed in a micromixer-settler with 30% TBP and 36% TiAP solvents. J Radioanal Nucl Chem 311(3):2111–2116. https://doi.org/10.1007/s10967-016-5134-5

    Article  CAS  Google Scholar 

  33. Mondal S, Kumar V, Singh D, Sharma J, Sreenivas T, Kain V (2017) Process for recovery of uranium from low grade SDU of phosphoric acid/D2EHPA-TBP plant origin using DHOA/n-dodecane solvent. Sep Purif Technol 189:341–346. https://doi.org/10.1016/j.seppur.2017.07.048

    Article  CAS  Google Scholar 

  34. Nazal MK, Albayyari MA, Khalili FI, Asoudani E (2017) Synergistic effect of tri-n-butyl phosphate (TBP) or tri-n-octyl phosphine oxide (TOPO) with didodecylphosphoric acid (HDDPA) on extraction of uranium (VI) and thorium (IV) ions. J Radioanal Nucl Chem 312(1):133–139. https://doi.org/10.1007/s10967-017-5204-3

    Article  CAS  Google Scholar 

  35. Verma P, Mohapatra P, Bhattacharyya A, Yadav A, Jha S, Bhattacharyya D (2018) Structural investigations on uranium (VI) and thorium (IV) complexation with TBP and DHOA: a spectroscopic study. New J Chem 42(7):5243–5255. https://doi.org/10.1039/C7NJ04460G

    Article  CAS  Google Scholar 

  36. Talan D, Huang Q (2020) Separation of thorium, uranium, and rare earths from a strip solution generated from coarse coal refuse. Hydrometallurgy 197:105446. https://doi.org/10.1016/j.hydromet.2020.105446

    Article  CAS  Google Scholar 

  37. Hanifpour F, Moazen M, Ghaemi A, Taghizadeh M, Samadfam M (2011) Uranium Recovery From Isfahan’s UCF plant solid waste using a pulsed sieve-plate column. Paper presented at the 7th international chemical engineering congress & exhibition.

  38. Duff MC, Amrhein C, Bertsch PM, Hunter DB (1997) The chemistry of uranium in evaporation pond sediment in the San Joaquin Valley, California, USA, using X-ray fluorescence and XANES techniques. Geochim Cosmochim Acta 61(1):73–81. https://doi.org/10.1016/S0016-7037(96)00330-4

    Article  CAS  Google Scholar 

  39. Lacher J, Salzman JD, Park J (1961) Dissolving uranium in nitric acid. Ind Eng Chem 53(4):282–284. https://doi.org/10.1021/ie50616a023

    Article  CAS  Google Scholar 

  40. Moeken HP (1969) The density of nitric acid solutions of uranium and uranium-aluminium alloys. Anal Chim Acta 44(1):225–228. https://doi.org/10.1016/S0003-2670(01)81757-8

    Article  CAS  Google Scholar 

  41. Fresenius R, Fresenius TW (1953) Handbuch der analytischen Chemie: Quantitative Bestimmungs-und Trennungsmethoden/hrsg. von R. Fresenius. Elemente der sechsten Hauptgruppe. 1, Sauerstoff (einschl. Ozon und Wasserstoffperoxyd)/bearb. von O. Liebknecht. Springer, Berlin

  42. Li P, Chen P, Liu Z, Nie S, Wang X, Wang G, Zhang W, Chen H, Wang L (2019) Highly efficient elimination of uranium from wastewater with facilely synthesized Mg-Fe layered double hydroxides: Optimum preparation conditions and adsorption kinetics. Ann Nuclear Energy 140:107140. https://doi.org/10.1016/j.anucene.2019.107140

    Article  CAS  Google Scholar 

  43. Benedict M, Levi H, Pigford T (1982) Nuclear chemical engineering. Nucl Sci Eng 82(4):476

    Article  Google Scholar 

  44. Das D, Juvekar V, Bhattacharya R (2015) Problem associated with the use of TBP for LEM extraction of U (VI) and attempt to overcome this problem using other ligands. J Radioanal Nucl Chem 304(3):1027–1042. https://doi.org/10.1007/s10967-014-3918-z

    Article  CAS  Google Scholar 

  45. Ganesh S, Pandey N (2019) Comparative studies on the extraction of Th (IV) from nitric acid medium with 1.1 M TBP, TiAP-nDD mixture. In: Proceedings of the fourteenth biennial DAE-BRNS symposium on nuclear and radiochemistry: book of abstracts, 2019

  46. Zhang W, Wang J (2017) Leaching performance of uranium from the cement solidified matrices containing spent radioactive organic solvent. Ann Nuclear Energy 101:31–35. https://doi.org/10.1016/j.anucene.2016.09.055

    Article  CAS  Google Scholar 

  47. Chen H-L, Wang J-C, Duan W-H, Chen J (2019) Hydrodynamic characteristics of 30% TBP/kerosene-HNO 3 solution system in an annular centrifugal contactor. Nucl Sci Tech 30(6):89. https://doi.org/10.1007/s41365-019-0615-1

    Article  Google Scholar 

  48. Abdel Rahman N, Daoud J, Aly H (2000) Stripping of U (VI) from loaded TBP-Kerosene Solutions

  49. Dupont D, Raiguel S, Binnemans K (2015) Sulfonic acid functionalized ionic liquids for dissolution of metal oxides and solvent extraction of metal ions. Chem Commun 51(43):9006–9009

    Article  CAS  Google Scholar 

  50. John DM, Weeks KM (2000) van’t Hoff enthalpies without baselines. Protein Sci 9(7):1416–1419. https://doi.org/10.1110/ps.9.7.1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stas J, Dahdouh A, Shlewit H (2005) Extraction of uranium (VI) from nitric acid and nitrate solutions by tributylphosphate/kerosene. Period Polytech Chem Eng 49(1):3–18

    CAS  Google Scholar 

  52. Khorfan S, Stas J, Kassem M (1998) Stripping of uranium from Dehpa/kerosene solvents by different aqueous media. J Radioanal Nucl Chem 238(1–2):145–148. https://doi.org/10.1007/BF02385370

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahad Ghaemi or Alireza Hemmati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaemi, A., Hemmati, A. Experimental investigation of uranium extraction from the industrial nuclear waste treatment plant by tri-butyl-phosphate. J Radioanal Nucl Chem 327, 1237–1249 (2021). https://doi.org/10.1007/s10967-021-07607-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07607-0

Keywords

Navigation