Sorption of various elements on ion-exchange resins in acetic media


An anion-exchange resin (Dowex 1×8) and a cation-exchange resin (Dowex 50W×8) were used for the determination of the distribution coefficients (Kd) for the following elements: Sr, Cd, Ba, Ra, Sc, Y, Pm, Lu, Ac, Ti, Zr, Hf, Th, As, Sb, and Se in acetic acid media. Concentration of acetic acid was expanded down to 0.01 M and the distribution coefficients on the ion-exchange resins for the elements with valences from II to VI were determined. Furthermore, the Kd values for a mixtures of acetic acid and ammonium acetate were obtained. Accumulated data is important for more efficient separations and purifications of these elements in the future.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Nelson F, Murase T, Kraus KA (1964) Ion exchange procedures: I. Cation exchange in concentration HCl and HClO4 solutions*. J Chromatogr A 13:503–535

    CAS  Article  Google Scholar 

  2. 2.

    Strelow FEW (1960) An ion exchange selectivity scale of cations based on equilibrium distribution coefficients. J Anal Chem 32(9):1185–1188

    CAS  Article  Google Scholar 

  3. 3.

    Nelson F, Michelson DC (1966) Ion-exchange procedures: IX, cation exchange in HBr solutions. J Chromatogr A 25:414–441

    CAS  Article  Google Scholar 

  4. 4.

    Marsh SF, Alarid JE, Hammond CF et al (1978) Anion exchange of 58 elements in hydrobromic acid and in hydrocloric acid. Los Alamos Scientific Laboratory Report LA-7084

  5. 5.

    Marsh SF, Alarid JE, Hammond CF et al (1978) Cation exchange of 53 elements in nitric acid. Los Alamos Scientific Laboratory Report LA-7083

  6. 6.

    Strelow FEW, Rethemeyer R, Bothma CJC (1965) Ion exchange selectivity scales for cations in nitric acid and sulfuric acid media with a sulfonated polysterene resin. J Anal Chem 37(1):106–111

    CAS  Article  Google Scholar 

  7. 7.

    Fritz JS, Garralda BB, Karraker SK (1961) Cation exchange separation of metal ions by elution with hydrofluoric acid. J Anal Chem 33(7):882–886

    CAS  Article  Google Scholar 

  8. 8.

    Ichikawa F, Uruno S, Imai H (1961) Distribution of various elements between nitric acid and anion exchange resin. Bull Chem Soc Jpn 34(7):952–955

    CAS  Article  Google Scholar 

  9. 9.

    Faris JP, Buchanan RF (1964) Anion exchange characteristics of the elements in nitric acid medium. J Anal Chem 36(6):1157–1158

    CAS  Article  Google Scholar 

  10. 10.

    Buchanan RF, Faris JP (1962) Radioisotopes in the physical sciences and industry, vol II. International atomic energy agency, Vienna, p 361

    Google Scholar 

  11. 11.

    Buchanan RF, Faris JP, Orlandini KA, Hughes JP (1958) Reactor fuel measurement techniques symposium. TID-7560. Analytical application of the nitric acid anion exchange system to plutonium-fissium and plutonium-binary alloys used in metallurgical studies. United States Atomic Energy Commission, Washington, p 179

  12. 12.

    Faris JP, Buchanan RF (1960) Anion exchange characteristics of the elements in nitric acid medium. In: 4th conference on analytical chemistry in nuclear reactor technology, TID-7606. Gatlinburg, Tennessee, p 185

  13. 13.

    Baimukhanova A, Radchenko V, Kozempel J et al (2018) Utilization of (p, 4n) reaction for86Zr production with medium energy protons and development of a 86Zr →86Y radionuclide generator. J Radioanal Nucl Chem 316(1):191–199

    CAS  Article  Google Scholar 

  14. 14.

    Radchenko V, Filosofov DV, Bochko OK et al (2014) Separation of 90Nb from zirconium target for application in immuno-pet. J Radiochimica Acta 102(5):433–442

    CAS  Article  Google Scholar 

  15. 15.

    Castillo AX, Chinol M, Xiao-Hai J et al (2009) Therapeutic radionuclide generators: 90Sr/90Y and 188W/188Re generators. International Atomic Energy Agency, Vienna

    Google Scholar 

  16. 16.

    Biggi A, Viglietti A, Farinelli MC et al (1995) Estimation of glomerular filtration rate and technetium-99m diethylene triamine penta-acetic acid using chromium-51 ethylene diamine tetra-acetic acid. Eur J Nucl Med 22(6):532–536

    CAS  Article  Google Scholar 

  17. 17.

    Bakker WH, Albert R, Bruns C et al (1991) [111In-DTPA-D-Phe1]-Octreotide, a potential radiopharmaceutical for imaging of somatostatin reseptor-positive tumors: synthesis, radiolabeling and in vitro validation. Life Sci 49(22):1583–1591

    CAS  Article  Google Scholar 

  18. 18.

    Loberg MD, Cooper M, Harvey E et al (1976) Development of new radiopharmaceuticals based on N-substitution of iminodiacetic acid. J Nucl Med 17(7):633–638

    CAS  PubMed  Google Scholar 

  19. 19.

    Lukeš I, Kotek J, Vojtíšek P et al (2001) Complexes of tetraazacycles bearing methylphosphinic/phosphonic acid pendant arms with copper(II), zinc(II) and lanthanides(III). A comparison with their acetic acid analogues. Coord Chem Rev 216–217:287–312

    Article  Google Scholar 

  20. 20.

    Schollenberger CJ (1932) Ammonium acetate as a neutral buffered standard. J Am Chem Soc 54(6):2568

    CAS  Article  Google Scholar 

  21. 21.

    Van Den Winkel P, De Corte F, Hoste J (1971) Anion exchange in acetic acid solutions. Anal Chim Acta 56(2):241–259

    Article  Google Scholar 

  22. 22.

    Jha SK, De Corte F, Hoste J (1972) Cation exchange in acetic acid solutions. Anal Chim Acta 62(1):163–176

    CAS  Article  Google Scholar 

  23. 23.

    Radchenko V, Filosofov DV, Dadakhanov J et al (2016) Direct flow separation strategy, to isolate no-carrier-added 90Nb from irradiated Mo or Zr targets. Radiochim Acta 104(9):625–634

    CAS  Article  Google Scholar 

  24. 24.

    Filosofov DV, Rakhimov AV, Bozhikov GA et al (2013) Isolation of radionuclides from thorium targets irradiated with 300-MeV protons. Radiochemistry 55:410–417

    CAS  Article  Google Scholar 

  25. 25.

    Budzinsky MZ, Velichkov AI, Karaivanov DV et al (2017) Use of 44Ti in the time-differential γγ perturbed-angular-correlation method for studying condensed matter. Instrum Exp Tech 60(6):775–781

    CAS  Article  Google Scholar 

  26. 26.

    Dadakhanov ZhA, Lebedev NA, Velichkov AI et al (2018) ) 172Hf → 172Lu radionuclide generator based on reverse-tandem separation scheme. Radiochemistry 60(4):356–366

    Article  Google Scholar 

  27. 27.

    Lebedev NA (1973) Production of radioactive preparations of rare earth elements and radiation sources for nuclear spectroscopic studies. Cand Sci Chem Diss Dubna

  28. 28.

    Tsoupko-Sitnikov V, Norseev Yu, Khalkin V (1996) Generator of actinium-225. J Radioanal Nucl Chem 205(1):75–83

    CAS  Article  Google Scholar 

  29. 29.

    National Nuclear Data Center n.d

  30. 30.

    Van den Winkel P, De Corte F, Speeke A et al (1968) Absorption of some elements in acetic acid medium on Dowex 1-X8. Anal Chim Acta 42(2):340

    Article  Google Scholar 

  31. 31.

    Nikitin MK, Ostikh-Narbut E, Tomilov SB (1966) Study of ion exchange in solutions of acetic and formic acids. Vestnik Pushkin LSU Ser Phys Chem 4:149–151

    Google Scholar 

Download references


The studies are carried out within the framework of the Program (№: 03-2-1100-2010/2021) on Cooperation between Joint Institute for Nuclear Research Dzhelepov Laboratory of Nuclear Problems in Dubna and the Faculty of Nuclear Sciences and Physical Engineering of the Czech Technical University in Prague.

Author information



Corresponding author

Correspondence to J. Dadakhanov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dadakhanov, J., Marinova, A., Baimukhanova, A. et al. Sorption of various elements on ion-exchange resins in acetic media. J Radioanal Nucl Chem 327, 1191–1199 (2021).

Download citation


  • Distribution coefficient
  • Ion-exchange resins
  • Acetic acid
  • Ammonium acetate
  • Gamma-ray spectrometry