Analysis of auto gamma images of plutonium bearing fuels: a comparative study of experimental and simulation methods


Image analysis and spectroscopic method of evaluation are applied on Gamma auto radiographs (GAR) to assess the effect of plutonium concentration in (U,Pu)O2 mixed oxide (MOX) fuel samples on the characteristics of the irradiated film. Results of the two different methods of GAR analysis are compared with results of the earlier studies using alpha irradiated solid state nuclear track detectors using Pu bearing fuel samples with low as well as high plutonium content. Theoretical simulations using Monte Carlo method of radiation transport were carried out for comprehension of the process of GAR under ideal conditions and results were applied for understanding the relative degree of heterogeneity in Pu bearing fuel samples and compared with that from experimental methods of analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    International Atomic Energy Energy (1998) Safe handling and storage of plutonium. Safety reports series. no. 9. ISSN 1020–6450

  2. 2.

    Ojovan MI, Lee WE (2005) An introduction to nuclear waste immobilisation. Elsevier, Amsterdam.

    Google Scholar 

  3. 3.

    Wick OJ (1980) Plutonium handbook. American Nuclear Society, La Grange Park

    Google Scholar 

  4. 4.

    Hare D, Tolmachev S, James A, Bishop D, Austin C, Fryer F, Doble P (2010) Elemental bio-imaging of thorium, uranium, and plutonium in tissues from occupationally exposed former nuclear workers. Anal Chem 82(8):3176–3182.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Petrov VG, Vlasova IE, Rodionova AA, Yapaskurt VO, Korolev VV, Petrov VA, Poluektov VV, Hammer J, Kalmykov SN (2019) Preferential sorption of radionuclides on different mineral phases typical for host rocks at the site of the future Russian high level waste repository. Appl Geochem 100:90–95.

    CAS  Article  Google Scholar 

  6. 6.

    Baghra C, Sathe DB, Sharma J, Walinjkar N, Behere PG, Afzal M, Kumar A (2015) Evaluation of micro-homogeneity in plutonium based nuclear reactor fuel pellets by alpha-autoradiography technique. J Nucl Mater 467:730–741.

    CAS  Article  Google Scholar 

  7. 7.

    Jose P, Panakkal D, Mukherjee V, Manoharan HS, Kamath, (1996) Nondestructive characterisation of MOX fuel rods using gamma autoradiography (GAR). J Nondestr Eval 16:5–7

    Google Scholar 

  8. 8.

    Vrinda Devi KV, Ramkumar J, Sengupta A, Somayajulu PS, Dubey JN, Shaikh IH, Chandramouleeswaran S (2017) Characterisation of nuclear fuel by spectroscopic evaluation of alpha autoradiographs. J Radioanal Nucl Chem.

    Article  Google Scholar 

  9. 9.

    Vrinda Devi KV, Ramkumar J, Chandramouleeswaran S (2017) Investigative studies of alpha irradiated PADC films: application to plutonium sources. JRNC.

    Article  Google Scholar 

  10. 10.

    Parker HMD, Joyce MJ (2015) The use of ionising radiation to image nuclear fuel: a review. Prog Nucl Energy 85:297–318

    CAS  Article  Google Scholar 

  11. 11.

    Panakkal JP (2014) Techniques for assuring the integrity of fuel pins for fast reactors. Procedia Eng 86:452–460

    CAS  Article  Google Scholar 

  12. 12.

    Vrinda Devi KV, Ramkumar J, Biju K, Sathe DB (2019) Plutonium heterogeneity in MOX fuel: a quantitative analysis. J Nucl Mater.

    Article  Google Scholar 

  13. 13.

    Sinha RK, Kakodkar A (2006) Design and development of the AHWR—the Indian thorium fuelled innovative nuclear reactor. Nucl Eng Des 236(7–8):683–700

    CAS  Article  Google Scholar 

  14. 14.

    Vrinda Devi KV, Panakkal JP (2013) Quantification of plutonium heterogeneity in (U, Pu) mixed oxide fuel using Passive Gamma Scanning. Nucl Eng Des 255:132–137

    CAS  Article  Google Scholar 

  15. 15.

    Böhlen TT, Cerutti F, Chin MPW, Fassò A, Ferrari A, Ortega PG, Mairani A, Sala PR, Smirnov G, Vlachoudis V (2014) Nucl Data Sheets 120:211–214

    Article  Google Scholar 

  16. 16.

    Ferrari A, Sala PR, Fasso` A, Ranft J (2005) CERN-2005-10, INFN/TC_05/11, SLAC-R-773 FLUKA

  17. 17.

    Biju K, Vrinda Devi KV (2018) Monte Carlo simulation of gamma images: application to plutonium rich mixed carbide fuel. J Radioanal Nucl Chem 319:167.

    CAS  Article  Google Scholar 

  18. 18.

    Latha S, Mathew MD, Parameswaran P, Rao KB, Mannan SL (2008) Thermal creep properties of alloy D9 stainless steel and 316 stainless steel fuel clad tubes. Int J Press Vessels Pip 85(12):866–870.

    CAS  Article  Google Scholar 

Download references


The authors express their sincere thanks to Shri. V. Bhasin, Director, Nuclear Fuels Group, BARC, Dr. A. K. Tyagi, Associate Director Chemistry Group, BARC, Dr. M. S. Kulkarni, Head, Health Physics Division, BARC and Shri. R. B. Bhatt, GM, Nuclear Recycle Board, Tarapur for the valuable support.

Author information



Corresponding author

Correspondence to K. V. Vrinda Devi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vrinda Devi, K.V., Ramkumar, J., Biju, K. et al. Analysis of auto gamma images of plutonium bearing fuels: a comparative study of experimental and simulation methods. J Radioanal Nucl Chem 327, 913–922 (2021).

Download citation


  • Plutonium
  • Agglomerate
  • Autoradiography
  • Monte Carlo simulation
  • Image analysis