Enriched 146Nd recovery from a 147Pm production process by applying ion imprinting technique


A neodymium-imprinted polymeric sorbent was synthesized to recover the enriched 146Nd-target material from 147Pm production process. The studies indicated the neodymium (III) adsorption capacity of 1.5 mg g− 1. 146Nd-oxide was irradiated in Tehran Research Reactor to produce 147Pm. Then, the prepared Nd-selective sorbent was applied to recover the macro-gram amounts of 146Nd from a micro-gram amount of 147Pm. Regarding the high efficiency of leaching process (> 96%), the remaining natural Nd-ions trapped in polymer structure caused an acceptable slight down-blending of the target material. The sorbent with 146Nd was burned with a heat-gun to produce 146Nd2O3 for the next experiments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Flickerm H, Loferski JJ, Elleman TS (1964) Construction of a promethium-147 atomic battery. IEEE Trans Electron Devices 11:2–8

    Article  Google Scholar 

  2. 2.

    Broderick K, Lusk R, Hinderer J, Griswold J, Boll R, Garland M, Heilbronn L, Mirzadeh S (2018) Reactor production of promethium-147. Appl Radiat Isot 144:54–63

    Article  Google Scholar 

  3. 3.

    Artun O (2017) Investigation of the production of promethium-147 via particle accelerator. Indian J Phys 91:909–914

    CAS  Article  Google Scholar 

  4. 4.

    Hinderer JH (2010) Radioisotopic impurities in promethium-147 produced at the ORNL high flux isotope reactor. Trans Am Nucl Soc 103:1163–1164

    Google Scholar 

  5. 5.

    Zell-Lusk RI (2013) Computer code verification and cross section calculation for promethium-147. Nuclear Eng Reports. https://trace.tennessee.edu/utne_reports/1

  6. 6.

    Sugihara TT, James HI, Troianello EJ, Bowen VT (1959) Radiochemical separation of fission products from large volumes of sea water. Strontium, cesium, cerium, and promethium. Anal Chem 31:44–49

    CAS  Article  Google Scholar 

  7. 7.

    Pressly RS, Ottinger CL, Orr PB, Beauchamp EE (1960) Purification of kilocurie quantities of promethium-147 by ion exchange. Report ORNL-2928

  8. 8.

    Lee CS, Wang YM, Cheng WL, Ting G (1989) Chemical study on the separation and purification of promethium-147. J Radioanal Nucl Chem 130:21–37

    CAS  Article  Google Scholar 

  9. 9.

    Knapp FE, Boll RA, Mirzadeh S (2008) Reactor production and purification of promethium-147. United State Patent, No: US 7435399 B2

  10. 10.

    Monroy-Guzman F, Jaime Salinas E (2015) Separation of micro-macrocomponent systems: 149Pm–Nd, 161Tb–Gd, 166Ho–Dy and 177Lu–Yb by extraction chromatography. J Mex Chem Soc 59(2):143–150

    CAS  Google Scholar 

  11. 11.

    Baulin VE, Kalashnikova IP, Kovalenko OV, Baulin DV, Usolkin AN, Tsivadze AY (2016) Acidic phosphoryl podands as components of extraction chromatography material for selective extraction of promethium-147. Prot Met Phys Chem Surf 52:996–1004

    CAS  Article  Google Scholar 

  12. 12.

    Ambe F, Burba P, Lieser KH (1978) Separation of lanthanides by ion-exchange equilibria—a comparison of three cases of selective separations. Z Anal Chem 289:96–101

    CAS  Article  Google Scholar 

  13. 13.

    Imura H, Mito H (1995) Selective extraction of light lanthanides (III) with 18-crown-6 and perfluorooctanoate. J Radioanal Nucl Chem 189:229–235

    CAS  Article  Google Scholar 

  14. 14.

    Dehghani F, Wells T, Cotton NJ, Foster NR (1996) Extraction and separation of lanthanides using dense gas CO2 modified with tributyl phosphate and di(2-ethyl hexyl)phosphoric acid. J Supercrit Fluids 9:263–272

    CAS  Article  Google Scholar 

  15. 15.

    Nesterenko PN, Jonesb P (1997) First isocratic separation of fourteen lanthanides and yttrium by high-performance chelation ion chromatography. Anal Commun 34:7–8

    CAS  Article  Google Scholar 

  16. 16.

    Hirayama N, Takeuchi I, Honjo T (1997) Ion-pair extraction system for the mutual separation of lanthanides using divalent quadridentate Schiff bases. Anal Chem 69:4814–4818

    CAS  Article  Google Scholar 

  17. 17.

    Koma Y, Koyama T, Tanaka Y (1999) Enhancement of the mutual separation of lanthanide elements in the solvent extraction based on the CMPO-TBP mixed solvent by using a DTPA-nitrate solution. J Nucl Sci Tech 36:934–939

    CAS  Article  Google Scholar 

  18. 18.

    Araki K, Yoshida M, Uezu K, Goto M, Furusaki S (2000) Lanthanide-imprinted resins prepared by surface template polymerization. J Chem Eng Jpn 33:665–668

    CAS  Article  Google Scholar 

  19. 19.

    Doleža J, Moreno C, Hrdlicka A, Valiente M (2000) Selective transport of lanthanides through supported liquid membranes containing non-selective extractant, di-(2-ethylhexyl) phosphoric acid, as a carrier. J Membr Sci 168:175–181

    Article  Google Scholar 

  20. 20.

    Kolarik Z (2008) Complexation and separation of lanthanides (III) and actinides (III) by heterocyclic N-donors in solutions. Chem Rev 108:4208–4252

    CAS  Article  Google Scholar 

  21. 21.

    Nishihama S, Tajiri Y, Yoshizuka K (2006) Separation of lanthanides using micro solvent extraction system. Ars Separatoria Acta 4:18–26

    Google Scholar 

  22. 22.

    Husain M, Ansari SA, Mohapatra PK, Gupta RK, Parmar VS, Manchanda VK (2008) Extraction chromatography of lanthanides using N,N,N′,N′-tetraoctyl diglycolamide (TODGA) as the stationary phase. Desalination 229:294–301

    CAS  Article  Google Scholar 

  23. 23.

    Shimojo K, Aoyagi N, Saito T, Okamura H, Kubota F, Goto M, Naganawa H (2014) Highly efficient extraction separation of lanthanides using a diglycolamic acid extractant. Anal Sci 30:263–269

    CAS  Article  Google Scholar 

  24. 24.

    Nakasea M, Tanakab M, Takeshit K (2015) Continuous mutual separation of lanthanides by a liquid-liquid countercurrent centrifugal extractor with Taylor vortices. In: The fourth international symposium on innovative nuclear energy systems, INES-4, Energy Procedia, vol 71, pp 106–111

  25. 25.

    Trikha R, Sharma BK, Sabharwal KN, Prabhu K (2015) Elution profiles of lanthanides with α-hydroxyisobutyric acid by ion exchange chromatography using fine resin. J Sep Sci 38:3810–3814

    CAS  Article  Google Scholar 

  26. 26.

    Biju VM, Gladis JM, Rao TP (2003) Effect of γ-irradiation of ion imprinted polymer (IIP) particles for the preconcentrative separation of dysprosium from other selected lanthanides. Talanta 60:747–754

    CAS  Article  Google Scholar 

  27. 27.

    Buyuktiryaki S, Say R, Ersoz A, Birlik E, Denizli A (2005) Selective preconcentration of thorium in the presence of UO(2)(2+), Ce(3+) and La(3+) using Th(IV)-imprinted polymer. Talanta 67:640–645

    CAS  Article  Google Scholar 

  28. 28.

    Alizadeh T, Amjadi S (2013) Synthesis of nano-sized Eu3+-imprinted polymer and its application for indirect voltammetric determination of europium. Talanta 106:431–439

    CAS  Article  Google Scholar 

  29. 29.

    Laatikainen K, Udomsap D, Siren H, Brisset H, Sainio T, Branger C (2015) Effect of template ion-ligand complex stoichiometry on selectivity of ion-imprinted polymers. Talanta 134:538–545

    CAS  Article  Google Scholar 

  30. 30.

    Moussa M, Pichon V, Mariet C, Vercouter T, Delaunay N (2016) Potential of ion imprinted polymers synthesized by trapping approach for selective solid phase extraction of lanthanides. Talanta 161:459–468

    CAS  Article  Google Scholar 

  31. 31.

    Shirvani-Arani S, Ahmadi SJ, Bahrami-Samani A, Ghannadi-Maragheh M (2008) Synthesis of nano-pore samarium (III)-imprinted polymer for preconcentrative separation of samarium ions from other lanthanide ions via solid phase extraction. Anal Chim Acta 623:82–88

    CAS  Article  Google Scholar 

  32. 32.

    Jiajia G, Jibao C, Qingde (2009) S Ion imprinted polymer particles of neodymium: synthesis, characterization and selective recognition. J Rare Earths 27:22–27

    Article  Google Scholar 

  33. 33.

    Liu QP, Li HZ, Zhuang HY, Pei MS (2011) Synthesis of a new ion imprinted polymer material for separation and preconcentration of traces of neodymium ions. Adv Mater Res 306–307:705–708

    Article  Google Scholar 

  34. 34.

    Dolak I, Kecili R, Hür D, Ersöz A, Say R (2015) Ion-imprinted polymers for selective recognition of neodymium (III) in environmental samples. Ind Eng Chem Res 54(19):5328–5335

    CAS  Article  Google Scholar 

  35. 35.

    Zheng X, Zhang F, Liu E, Xu X, Yan Y (2017) Efficient recovery of neodymium in acidic system by free-standing dual-template docking oriented ionic imprinted mesoporous films. ACS Appl Mater Interfaces 9:730–739

    CAS  Article  Google Scholar 

  36. 36.

    Zheng X, Zhang Y, Zhang F, Li Z, Yan Y (2018) Dual-template docking oriented ionic imprinted bilayer mesoporous films with efficient recovery of neodymium and dysprosium. J Hazard Mater 353:496–504

    CAS  Article  Google Scholar 

Download references


This work was supported through the grant provided by Nuclear Science and Technology Research Institute (NSTRI). Mr. Ali Yousefi’s assistances is gratefully acknowledged, as well.

Author information



Corresponding author

Correspondence to Ali Bahrami-Samani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shirvani-Arani, S., Hosseini, S.E., Ghannadi-Maragheh, M. et al. Enriched 146Nd recovery from a 147Pm production process by applying ion imprinting technique. J Radioanal Nucl Chem 327, 761–770 (2021). https://doi.org/10.1007/s10967-020-07560-4

Download citation


  • Enriched 146Nd
  • Recovery
  • 147Pm
  • Ion imprinted polymer
  • Adsorption
  • Extraction