Natural radioactivity levels and radiological implications in the high natural radiation area of Wadi El Reddah, Egypt

Abstract

Wadi El Reddah, Egypt, is mostly enclosed by scattered exposure to the chronological sequence of a metavolcanic and metagabbro-diorite complex. There are radiological impacts due to internal and external exposure to the high natural background radiation caused by 226Ra, 232Th, and 40K in the Wadi El-Reddah stream sediments. 72 samples were collected and the activity concentration was measured using a NaI(Tl) gamma-spectroscopy system. The average activity concentration of 226Ra, 232Th and 40K was 215 ± 118 Bq kg−1, 131 ± 90 Bq kg−1 and 822 ± 125 Bq kg−1, respectively. Most of the studied samples had a higher activity concentration than the world average.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    UNSCEAR (2010) Sources and effects of ionizing radiation United Nations Scientific Committee on the Effects of Atomic Radiation

  2. 2.

    Abbasi A, Mirekhtiary F (2020) Heavy metals and natural radioactivity concentration in sediments of the Mediterranean Sea coast. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2020.111041

    Article  PubMed  Google Scholar 

  3. 3.

    Abbasi A, Mirekhtiary SF (2020) Radiological impacts in the high-level natural radiation exposure area residents in the Ramsar, Iran. Eur Phys J Plus. https://doi.org/10.1140/epjp/s13360-020-00306-x

    Article  Google Scholar 

  4. 4.

    El Rakaiby ML, Shalaby MH (1992) Geology of gebel qattar batholith, central eastern desert, egypt. Int J Remote Sens 13:2337–2347. https://doi.org/10.1080/01431169208904272

    Article  Google Scholar 

  5. 5.

    Ajayi OS (2009) Measurement of activity concentrations of 40K, 226Ra and 232Th for assessment of radiation hazards from soils of the southwestern region of Nigeria. Radiat Environ Biophys 48:323–332. https://doi.org/10.1007/s00411-009-0225-0

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Chougaonkar MP, Eappen KP, Ramachandran TV et al (2004) Profiles of doses to the population living in the high background radiation areas in Kerala, India. J Environ Radioact 71:275–297. https://doi.org/10.1016/S0265-931X(03)00174-7

    CAS  Article  Google Scholar 

  7. 7.

    Hanfi MY, Yarmoshenko IV, Seleznev AA, Zhukovsky MV (2019) The gross beta activity of surface sediment in different urban landscape areas. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-019-06657-9

    Article  Google Scholar 

  8. 8.

    Hussein HA, Abdel-Monem AA, Mahdy MA et al (1992) On the genesis of surficial uranium occurrences in West Central Sinai, Egypt. Ore Geol Rev 7:125–134. https://doi.org/10.1016/0169-1368(92)90008-9

    Article  Google Scholar 

  9. 9.

    Bisher AH (2012) Primary uranium mineralization in paleochannels of the Um Bogma formation at Allouga Southwestern Sinai. 11 Arab Conf Peac use At Energy

  10. 10.

    Ebyan OA, Khamis HA, Baghdady AR et al (2020) Low-temperature alteration of uranium–thorium bearing minerals and its significance in neoformation of radioactive minerals in stream sediments of Wadi El-Reddah, North Eastern Desert, Egypt. Acta Geochim 39:96–115. https://doi.org/10.1007/s11631-019-00335-z

    CAS  Article  Google Scholar 

  11. 11.

    Awad HAM, Zakaly HMH, Nastavkin AV, El-Taher A (2020) Radioactive content and radiological implication in granitic rocks by geochemical data and radiophysical factors, Central Eastern Desert, Egypt. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1830987

    Article  Google Scholar 

  12. 12.

    Zakaly HMH, Uosif MA, Issa S, et al (2019) Estimate the absolute efficiency by MATLAB for the NaI (Tl) detector using IAEA-314. In: AIP conference proceedings. AIP Publishing, p 20248

  13. 13.

    Abbasi A, Zakaly HM, Mirekhtiary F (2020) Baseline levels of natural radionuclides concentration in sediments East coastline of North Cyprus. Mar Pollut Bull 161:111793

    CAS  Article  Google Scholar 

  14. 14.

    Abbasi A, Mirekhtiary F (2019) 137Cs and 40K concentration ratios (CRs) in annual and perennial plants in the Caspian coast. Mar Pollut Bull 146:671–677

    CAS  Article  Google Scholar 

  15. 15.

    Abbasi A (2020) 137Cs distribution in the South Caspian region, transfer to biota and dose rate assessment. Int J Environ Anal Chem 100(5):576–590

    CAS  Article  Google Scholar 

  16. 16.

    Hanfi MY, Mostafa MYA, Zhukovsky M V. (2020) Heavy metal contamination in urban surface sediments: sources, distribution, contamination control, and remediation. Environ Monit Assess 192

  17. 17.

    Abbasi A, Mirekhtiary F (2020) Some physicochemical parameters and 226Ra concentration in groundwater samples of North Guilan, Iran. Chemosphere 127113

  18. 18.

    El-Taher A, Zakaly HMH, Elsaman R (2018) Environmental implications and spatial distribution of natural radionuclides and heavy metals in sediments from four harbours in the Egyptian Red Sea coast. Appl Radiat Isot 131:13–22. https://doi.org/10.1016/j.apradiso.2017.09.024

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Abbasi A, Kurnaz A, Turhan Ş, Mirekhtiary F (2020) Radiation hazards and natural radioactivity levels in surface soil samples from dwelling areas of North Cyprus. J Radioanal Nucl Chem, pp 1–8

  20. 20.

    Asgharizadeh F, Abbasi A, Hochaghani O, Gooya ES (2011) Natural radioactivity in granite stones used as building materials in Iran. Radiat Prot Dosimetry 149:321–326

    Article  Google Scholar 

  21. 21.

    Abbasi A (2013) Environmental radiation in high exposure building materials

  22. 22.

    Abbasi A (2013) Calculation of gamma radiation dose rate and radon concentration due to granites used as building materials in Iran. Radiat Prot Dosimetry 155:335–342. https://doi.org/10.1093/rpd/nct003

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Todorović N, Hansman J, Mrđa D et al (2017) Concentrations of 226Ra, 232Th and 40K in industrial kaolinized granite. J Environ Radioact 168:10–14. https://doi.org/10.1016/j.jenvrad.2016.07.032

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Sannappa J, Ningappa C, Narasimha KNP (2010) Natural radioactivity levels in granite regions of Karnataka State. Indian J Pure Appl Phys 48:817–819

    CAS  Google Scholar 

  25. 25.

    Joshua EO, Ademola JA, Akpanowo MA et al (2009) Natural radionuclides and hazards of rock samples collected from Southeastern Nigeria. Radiat Meas 44:401–404. https://doi.org/10.1016/j.radmeas.2009.04.002

    CAS  Article  Google Scholar 

  26. 26.

    Abbasi A, Mirekhtiary F, Mirekhtiary SF (2018) Risk assessment due to various terrestrial radionuclides concentrations scenarios. Int J Radiat Biol. https://doi.org/10.1080/09553002.2019.1539881

    Article  Google Scholar 

  27. 27.

    Avwiri GO, Ononugbo CP, Nwokeoji IE (2014) Radiation Hazard Indices and Excess Lifetime cancer risk in soil, sediment and water around mini-okoro/oginigba creek, Port Harcourt, Rivers State, Nigeria. Compr J Environ Earth Sci 3:38–50

    Google Scholar 

  28. 28.

    Boyle RW (2013) Geochemical prospecting for thorium and uranium deposits. Elsevier, Amsterdam

    Google Scholar 

  29. 29.

    Zakaly HM, Uosif MA, Madkour H, et al (2019) Assessment of natural radionuclides and heavy metal concentrations in marine sediments in view of tourism activities in Hurghada City, Northern Red Sea, Egypt. J Phys Sci 30

  30. 30.

    UNSCEAR (2008) Sources, effects and risks of ionizing radiation, New York

  31. 31.

    UNSCEAR (2000) Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Rep to Gen Assem, pp 1–10

  32. 32.

    Heaman LM, Bowins R, Crocket J (1990) The chemical composition of igneous zircon suites: implications for geochemical tracer studies. Geochim Cosmochim Acta 54:1597–1607. https://doi.org/10.1016/0016-7037(90)90394-Z

    CAS  Article  Google Scholar 

  33. 33.

    Awad HA, Zakaly HMH, Nastavkin AV, El-Taher A (2020) Radioactive content in the investigated granites by geochemical analyses and radiophysical methods around Um Taghir, Central Eastern Desert, Egypt. J Phys: Conf Ser 1582:012007. https://doi.org/10.1088/1742-6596/1582/1/012007

    CAS  Article  Google Scholar 

  34. 34.

    Nasdala L, Pidgeon RT, Wolf D (1996) Heterogeneous metamictization of zircon on a microscale. Geochim Cosmochim Acta 60:1091–1097. https://doi.org/10.1016/0016-7037(95)00454-8

    CAS  Article  Google Scholar 

  35. 35.

    El-Feky MG (2011) Mineralogical, REE-geochemical and fluid inclusion studies on some uranium occurrences, Gabal Gattar, Northeastern Desert, Egypt. Chin J Geochem 30:430–443. https://doi.org/10.1007/s11631-011-0529-z

    CAS  Article  Google Scholar 

  36. 36.

    Oyeyemi KD, Usikalu MR, Aizebeokhai AP, et al (2017) Measurements of radioactivity levels in part of Ota Southwestern Nigeria: Implications for radiological hazards indices and excess lifetime cancer-risks. In: Journal of Physics: Conference Series. Institute of Physics Publishing

  37. 37.

    Kurnaz A, Gezelge M, Hançerlioğulları A et al (2016) Radionuclides content in grape molasses soil samples from Central Black Sea region of Turkey. Hum Ecol Risk Assess 22:1375–1385. https://doi.org/10.1080/10807039.2016.1185356

    CAS  Article  Google Scholar 

  38. 38.

    Najam LA, Younis SA, Kithah FH (2015) Natural radioactivity in soil samples in nineveh province and the associated radiation hazards. Int J Phys 3:126–132. https://doi.org/10.12691/ijp-3-3-6

    CAS  Article  Google Scholar 

  39. 39.

    Aközcan S (2014) Annual effective dose of naturally occurring radionuclides in soil and sediment. Toxicol Environ Chem 96:379–386. https://doi.org/10.1080/02772248.2014.939177

    CAS  Article  Google Scholar 

  40. 40.

    Alfonso JA, Pérez K, Palacios D et al (2014) Distribution and environmental impact of radionuclides in marine sediments along the Venezuelan coast. J Radioanal Nucl Chem 300:219–224. https://doi.org/10.1007/s10967-014-2999-z

    CAS  Article  Google Scholar 

  41. 41.

    Papaefthymiou HV, Manousakas M, Fouskas A, Siavalas G (2013) Spatial and vertical distribution and risk assessment of natural radionuclides in soils surrounding the lignite-fired power plants in megalopolis basin, Greece. Radiat Prot Dosimetry 156:49–58. https://doi.org/10.1093/rpd/nct037

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Tripathi RM, Patra AC, Mohapatra S et al (2013) Natural radioactivity in surface marine sediments near the shore of Vizag, South East India and associated radiological risk. J Radioanal Nucl Chem 295:1829–1835. https://doi.org/10.1007/s10967-012-2106-2

    CAS  Article  Google Scholar 

  43. 43.

    Ergül HA, Belivermiş M, Kiliç Ö et al (2013) Natural and artificial radionuclide activity concentrations in surface sediments of Izmit Bay, Turkey. J Environ Radioact 126:125–132. https://doi.org/10.1016/j.jenvrad.2013.07.015

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Amin YM, Uddin Khandaker M, Shyen AKS et al (2013) Radionuclide emissions from a coal-fired power plant. Appl Radiat Isot 80:109–116. https://doi.org/10.1016/j.apradiso.2013.06.014

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Malain D, Regan PH, Bradley DA et al (2012) An evaluation of the natural radioactivity in Andaman beach sand samples of Thailand after the 2004 tsunami. Appl Radiat Isot 70:1467–1474. https://doi.org/10.1016/j.apradiso.2012.04.017

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    González-Fernández D, Garrido-Pérez MC, Casas-Ruiz M et al (2012) Radiological risk assessment of naturally occurring radioactive materials in marine sediments and its application in industrialized coastal areas: Bay of Algeciras, Spain. Environ Earth Sci 66:1175–1181. https://doi.org/10.1007/s12665-011-1325-0

    CAS  Article  Google Scholar 

  47. 47.

    Yii MW, Wan Mahmood ZUY, Ahmad Z et al (2011) NORM activity concentration in sediment cores from the Peninsular Malaysia East Coast Exclusive Economic Zone. J Radioanal Nucl Chem 289:653–661. https://doi.org/10.1007/s10967-010-0928-3

    CAS  Article  Google Scholar 

  48. 48.

    Kapdan E, Karahan A (2011) Radioactivity levels and health risks due to radionuclides in the soil of Yalova, Northwestern Turkey. Int J Environ Res 5:837–846

    CAS  Google Scholar 

  49. 49.

    Lee KY, Yoon YY, Cho SY et al (2009) Regional characteristics of naturally occurring radionuclides in surface sediments of Chinese deserts and the Keum River area of Korea. J Radioanal Nucl Chem 281:287–290. https://doi.org/10.1007/s10967-009-0099-2

    CAS  Article  Google Scholar 

  50. 50.

    Powell BA, Hughes LD, Soreefan AM et al (2007) Elevated concentrations of primordial radionuclides in sediments from the Reedy River and surrounding creeks in Simpsonville, South Carolina. J Environ Radioact 94:121–128. https://doi.org/10.1016/j.jenvrad.2006.12.013

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Papaefthymiou H, Papatheodorou G, Moustakli A et al (2007) Natural radionuclides and 137Cs distributions and their relationship with sedimentological processes in Patras Harbour, Greece. J Environ Radioact 94:55–74. https://doi.org/10.1016/j.jenvrad.2006.12.014

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Dai L, Wei H, Wang L (2007) Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: a case study from the city of Baoji, China. Environ Res 104:201–208. https://doi.org/10.1016/j.envres.2006.11.005

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Bikit I, Varga E, Čonkić L et al (2005) Radioactivity of the Bega sediment - Case study of a contaminated canal. Appl Radiat Isot 63:261–266. https://doi.org/10.1016/j.apradiso.2005.03.015

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Bem H, Wieczorkowski P, Budzanowski M (2002) Evaluation of technologically enhanced natural radiation near the coal-fired power plants in the Lodz region of Poland

  55. 55.

    Papp Z, Dezso Z, Daróczy S (2002) Significant radioactive contamination of soil around a coal-fired thermal power plant

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hesham M. H. Zakaly or Akbar. Abbasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tawfic, A.F., Zakaly, H.M.H., Awad, H.A. et al. Natural radioactivity levels and radiological implications in the high natural radiation area of Wadi El Reddah, Egypt. J Radioanal Nucl Chem 327, 643–652 (2021). https://doi.org/10.1007/s10967-020-07554-2

Download citation

Keywords

  • Wadi El Reddah
  • Activity concentration
  • Radiological impacts
  • Gamma-spectroscopy