Efficient removal of U(VI) from aqueous solutions via an activated 3D framework carbon


A three-dimensional (3D) activated framework carbon (3D AFC) was prepared in our research group and applied to adsorb U(VI) from radioactive waste water. Meanwhile, The effects of solid–liquid ratio, contact time, pH value, ionic strength and ionic concentration of adsorbate on the adsorption of U(VI) by the 3D AFC were studied. The calculated maximum adsorption capacity of 3D AFC was 127.5 mg/g under the condition that pH was 5.8. Combined with the properties of excellent three-dimensional network structure, simple synthesis methodology, and the adsorption capacity for U(VI), 3D AFC is considered to be feasible for recycling U(VI) from waste water solutions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Brook BW, Alonso A, Meneley DA, Misak J, Blees T, van Erp JB (2014) Why nuclear energy is sustainable and has to be part of the energy mix. SM&T 1–2:8–16

    Google Scholar 

  2. 2.

    Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510

    CAS  Article  Google Scholar 

  3. 3.

    Schnug E, Lottermoser BG (2013) Fertilizer-derived uranium and its threat to human health. Environ Sci Technol 47:2433–2434

    CAS  Article  Google Scholar 

  4. 4.

    Olatunji MA, Khandaker MU, Mahmud HNME, Amin YM (2015) Influence of adsorption parameters on cesium uptake from aqueous solutions- a brief review. RSC Adv 5:71658–71683

    CAS  Article  Google Scholar 

  5. 5.

    Kameda T, Suzuki Y, Yoshioka T (2014) Removal of arsenic from an aqueous solution by coprecipitation with manganese oxide. J Environ Chem Eng 2:2045–2049

    CAS  Article  Google Scholar 

  6. 6.

    Tag El-Din AF, El-Khouly ME, Elshehy EA, Atia AA, El-Said WA (2018) Cellulose acetate assisted synthesis of worm-shaped mesopores of MgP ion-exchanger for cesium ions removal from seawater. Micropor Mesopor Mat 265:211–218

    CAS  Article  Google Scholar 

  7. 7.

    Sunil K, Karunakaran G, Yadav S, Padaki M, Zadorozhnyy V, Pai RK (2018) Al-Ti2O6 a mixed metal oxide based composite membrane: a unique membrane for removal of heavy metals. Chem Eng J 348:678–684

    CAS  Article  Google Scholar 

  8. 8.

    Khorzughy SH, Eslamkish T, Ardejani FD, Heydartaemeh MR (2014) Cadmium removal from aqueous solutions by pumice and nano-pumice. Korean J Chem Eng 32:88–96

    Article  Google Scholar 

  9. 9.

    Yakout SM, Rizk MA (2013) Adsorption of uranium by low-cost adsorbent derived from agricultural wastes in multi-component system. Desalin Water Treat 53:1917–1922

    Article  Google Scholar 

  10. 10.

    Yakout SM, Metwally SS, El-Zakla T (2013) Uranium sorption onto activated carbon prepared from rice straw: competition with humic acids. Appl Surf Sci 280:745–750

    CAS  Article  Google Scholar 

  11. 11.

    Kütahyalı C, Eral M (2010) Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J Nucl Mater 396:251–256

    Article  Google Scholar 

  12. 12.

    Lv Z, Wang H, Chen C, Yang S, Chen L, Alsaedi A, Hayat T (2019) Enhanced removal of uranium(VI) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent. J Colloid Interf Sci 537:A1–A10

    CAS  Article  Google Scholar 

  13. 13.

    Abney CW, Mayes RT, Saito T, Dai S (2017) Materials for the recovery of uranium from seawater. Chem Rev 117:13935–14013

    CAS  Article  Google Scholar 

  14. 14.

    Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: Kinetic and thermodynamic investigations. J Colloid Interf Sci 296:434–441

    CAS  Article  Google Scholar 

  15. 15.

    Bhatnagar A, Hogland W, Marques M, Sillanpää M (2013) An overview of the modification methods of activated carbon for its water treatment applications. Chem Eng J 219:499–511

    CAS  Article  Google Scholar 

  16. 16.

    Zhao Y, Liu C, Feng M, Chen Z, Li S, Tian G, Wang L, Huang J, Li S (2010) Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon. J Hazard Mater 176:119–124

    CAS  Article  Google Scholar 

  17. 17.

    Vivero-Escoto JL, Carboni M, Abney CW, deKrafft KE, Lin W (2013) Organo-functionalized mesoporous silicas for efficient uranium extraction. Micropor Mesopor Mat 180:22–31

    CAS  Article  Google Scholar 

  18. 18.

    Wang H, Ma L, Cao K, Geng J, Liu J, Song Q, Yang X, Li S (2012) Selective solid-phase extraction of uranium by salicylideneimine-functionalized hydrothermal carbon. J Hazard Mater 229–230:321–330

    Article  Google Scholar 

  19. 19.

    Li H, Li Y, Zhou Y, Li B, Liu D, Liao H (2019) Efficient removal of uranium using a melamine/trimesic acid-modified hydrothermal carbon-based supramolecular organic framework. J Colloid Interf Sci 544:14–24

    CAS  Article  Google Scholar 

  20. 20.

    Yang B, Chen J, Lei S, Guo R, Li H, Shi S, Yan X (2018) Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv Energy Mater 8:1702409

    Article  Google Scholar 

  21. 21.

    Cao L, Fan F (2020) Deformation and instability of three-dimensional graphene honeycombs under in-plane compression: atomistic simulations. Extreme Mech Lett 39:100861

    Article  Google Scholar 

  22. 22.

    Zhang Y, Guan W, Wang Q, Wang X, Lai X, Shuai M (2010) Study the oxidation kinetics of uranium using XRD and Rietveld method. IOP Conference Series: Mater Sci Eng 9:012019

    Article  Google Scholar 

  23. 23.

    Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. SMALL 6:711–723

    CAS  Article  Google Scholar 

  24. 24.

    Ai Y, Liu Y, Lan W, Jin J, Xing J, Zou Y, Zhao C, Wang X (2018) The effect of pH on the U(VI) sorption on graphene oxide (GO): a theoretical study. Chem Eng J 343:460–466

    CAS  Article  Google Scholar 

  25. 25.

    Sajjad S, Khan Leghari SA, Iqbal A (2017) Study of graphene oxide structural features for catalytic, antibacterial, gas sensing, and metals decontamination environmental applications. ACS Appl Mater Interfaces 9:43393–43414

    CAS  Article  Google Scholar 

  26. 26.

    Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl Mater Interfaces 5:425–432

    CAS  Article  Google Scholar 

  27. 27.

    Xie Y, Chen C, Ren X, Wang X, Wang H, Wang X (2019) Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog Mater Sci 103:180–234

    CAS  Article  Google Scholar 

  28. 28.

    Chen L, Lu S (2008) Sorption and desorption of radiocobalt on montmorillonite-effects of pH, ionic strength and fulvic acid. Appl Radiat Isot 66:288–294

    CAS  Article  Google Scholar 

  29. 29.

    Zhou W, Wang J, He J, Yang X, Shi Y, Wang X, Liu C (2019) Adsorption of U(VI) on montmorillonite in the presence of ethylenediaminetetraacetic acid. Colloids Sur A 583:123929

    CAS  Article  Google Scholar 

  30. 30.

    Kilislioglu A (2003) The effect of various cations and pH on the adsorption of U(VI) on Amberlite IR-118H resin. Appl Radiat Isot 58:713–717

    CAS  Article  Google Scholar 

  31. 31.

    Okeola FO, Odebunmi EO (2010) Comparison of Freundlich and Langmuir isotherms for adsorption of methylene blue by agrowaste derived activated carbon. Adv Environ Biol 4:329–335

    CAS  Google Scholar 

Download references


We thank the Natural Science Foundation of China (20190431), the Clinical Research Foundation of Western Stomatology of Chinese Dental Association (CSA-W2018-07).

Author information



Corresponding authors

Correspondence to Fuxiang Song or Bin Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, F., Zhang, Z., Mai, X. et al. Efficient removal of U(VI) from aqueous solutions via an activated 3D framework carbon. J Radioanal Nucl Chem 327, 721–729 (2021). https://doi.org/10.1007/s10967-020-07541-7

Download citation


  • Three-dimensional (3D)
  • Framework carbon
  • U(VI)
  • Removal