Retention behaviour of Ba(II) on argillaceous rocks of Cuddapah system


Argillaceous rock formation of Cuddapah System are under evaluation as the potential host rock for deep geological repository in India. Sorption of Ba(II), as a chemical analogue of 90Sr, on argillaceous rock formation has been investigated by batch sorption method. The effect of pH, ionic strength and [Ba(II)] on Ba(II) sorption has been investigated. Ba(II) sorption was found to be independent of pH and decreased with increasing ionic strength, indicating ion exchange as dominant sorption mode for Ba(II). Ba(II) adsorption isotherm was linear up to [Ba(II)] = 3.0 × 10–6 M. Ba(II) sorption was successfully modeled using surface complexation modeling.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Lázár K, Máthé Z(2012)Claystone as a Potential Host Rock for Nuclear Waste Storage, Clay Minerals in Nature-Their Characterization, Modification and Application) In Tech, Hungary, p 55

  2. 2.

    Nagra (2002) Project Opalinus Clay: Safety Report. Demonstration of Disposal Feasibility (Entsorgungsnachweis) for Spent Fuel, Vitrified High-Level Waste and Long-Lived Intermediate-Level Waste. Nagra Technical Report NTB 02–05,Nagra, Wettingen, Switzerland

  3. 3.

    Ondraf (2001) SAFIR 2: Safety Assessment and Feasibility Interim Report 2. NIROND-2001-06 E. Ondraf, Brussels, Belgium

  4. 4.

    Renauld V, Habrant N (2001) AndraRéférentielgéologique du site de Meuse/Haute Marne. Rapp. A RP ADS99-005 de l’Agencenationale pour la gestion des déchetsradioactifs, Châtenay-Malabry, France

  5. 5.

    Mell P, Megyeri J, Riess L, Máthé Z, Csicsák J, Lázár K (2006a) Sorption of Co, Cs, Sr and I onto argillaceous rock as studied by radiotracers. J Radioanal Nucl Chem 268:405–410

    CAS  Article  Google Scholar 

  6. 6.

    Mell P, Megyeri J, Riess L, Máthé Z, Csicsák J, Lázár K (2006b) Diffusion of Sr, Cs, Co and I in argillaceous rock as studied by radiotracers. J Radioanal Nucl Chem 268:411–417

    CAS  Article  Google Scholar 

  7. 7.

    Maes N, Salah S, Bruggeman C, Aertsens M, Martens E, Van Laer L (2017) Strontium retention and migration behaviour in Boom Clay, SCK CEN/26018057, ER-0394

  8. 8.

    Fernandes MM, Vér N, Baeyens B (2015) Predicting the uptake of Cs Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite. Appl Geochem 59:189–199

    Article  Google Scholar 

  9. 9.

    Bradbury MH, Baeyens B (2011) Predictive sorption modelling of Ni(II), Co(II), Eu(IIII), Th(IV) and U(VI) on MX-80 bentonite and Opalinus Clay: a bottom-up approach. Appl Clay Sci 52:27–33

    CAS  Article  Google Scholar 

  10. 10.

    Patel MA, Kar AS, Garg D, Kumar S, Tomar BS, Bajpai RK (2017) Sorption studies of radionuclides on argillaceous clays of Cuddapah System. J Radioanal Nucl Chem 313:555–563

    CAS  Article  Google Scholar 

  11. 11.

    Van Loon LR, Baeyens B, Bradbury MH (2005) Diffusion and retention of sodium and strontium in Opalinus clay: comparison of sorption data from diffusionandbatch sorption measurements, and geochemical calculations. Appl Geochem 20:2351–2363

    Article  Google Scholar 

  12. 12.

    Breitner D, Osan J, Fabian M, Zagyvai P, Szabo C, Dahn R, Fernandes MM, Sajo IE, Mathe Z, Torok S (2015) Characteristics of uranium uptake of BodaClaystone Formation as the candidate host rock of high level radioactive waste repository in Hungary. Environ Earth Sci 73:209–219

    CAS  Article  Google Scholar 

  13. 13.

    Fröhlich DR, Amayri S, Drebert J, Reich T (2011) Sorption of neptunium(V) on Opalinus Clay under aerobic/anaerobic conditions. Radiochim Acta 99:71–77

    Article  Google Scholar 

  14. 14.

    Joseph C, Stockman M, Schmeide K, Sachs S, Brendler V, GeipelG BernhardG (2011) Sorption of uranium(VI) onto Opalinus Clay in the absence and presence of humic acid in Opalinus Clay pore water. Chem Geol 284:240–250

    CAS  Article  Google Scholar 

  15. 15.

    Reich T, Amayri S, Börner PJB, Drebert J, Fröhlich DR, Grolimund D, Kaplan U (2016) Speciation of neptunium during sorption and diffusion in natural clay. J Phys Conf Ser.

    Article  Google Scholar 

  16. 16.

    Wu T, Amayri S, Drebert J, Vanloon L, Reich T (2009) Neptunium(V) sorption and diffusion in opalinus clay. Environ Sci Technol 243:6567–6571

    Article  Google Scholar 

  17. 17.

    Konno M, Takagai Y (2018) Determination and comparison of the strontium-90 concentrationsin topsoil of Fukushima Prefecture before and after the FukushimaDaiichi nuclear accident. ACS Omega 3:18028–18038

    CAS  Article  Google Scholar 

  18. 18.

    Bradbury MH, Baeyens B (1997) A mechanistic description of Ni and Zn Sorption on Na-montmorillonite. Part II: modelling. J Contam Hydrol 27:223–248

    CAS  Article  Google Scholar 

  19. 19.

    Martell AL, Smith RM (2003) NIST standard reference database, 46.7, NIST Critically selected constants of metal complexes, National Institutes of Standards & Technology Gaithersburg, MD, USA

  20. 20.

    Gaustafsson JP (2012) Visual Minteq Ver 3.1

  21. 21.

    Herbelin AL, Westall JC (1999) FITEQL, a computer program for determination of chemical equilibrium constant from experimental data. Department of Chemistry, Oregon State University, Oregon 97331, USA

  22. 22.

    Poinssot C, Baeyens B, Bradbury MH (1999) Experimental studies of Cs, Sr, Ni andEu sorption on Na-illite and the modelling of Cs sorption. Paul ScherrerInstitut, Wettingen, Switzerland. Nagra Tech. Rep. NTB 99-04, pp 75

  23. 23.

    Missana T, Garcia-Gutierrez M, Alonso U (2008) Sorption of strontium onto illite/smectite mixed clays. Phys Chem Earth 33:156–162

    Article  Google Scholar 

  24. 24.

    Fuller AJ, Shaw S, Peacock CL, Trivedi D, Small JS, AbrahamsenIan LG, Burke IT (2014) Ionic strength and pH dependent multi-site sorption of Cs onto a micaceous aquifer sediment. Appl Geochem 40:32–42

    CAS  Article  Google Scholar 

  25. 25.

    Jeong CH, Kim CS, Kim SJ, Park SW (1996) Affinity of radioactive cesium and strontium for illite and smectite clay in the presence of groundwater ions. J Environ Sci Heal A 31:2173–2192

    Google Scholar 

  26. 26.

    Kasar S, KumarS KA, Bajpai RK, Kaushik CP, Tomar BS (2014) Retention behaviour of Cs(I), Sr(II), Tc(VII) and Np(V) on smectite-rich clay. J Radioanal Nucl Chem 300:71–75

    CAS  Article  Google Scholar 

  27. 27.

    Kasar S, Kumar S, Saha A, Tomar BS, Bajpai RK (2017) Mechanistic and thermodynamic aspects of Cs(I) and Sr(II) interactions with smectite-rich natural clay. Environ Earth Sci 76:274–283

    Article  Google Scholar 

  28. 28.

    Atun G, Bascetin E (2003) Adsorption of barium on kaolinite, illite and montmorillonite at various ionic strengths. RadiochimicaActa 91:223–228

    CAS  Google Scholar 

  29. 29.

    Wallace SH, Samuel S, Katherine M, JoeSS FAJ, Burke IT (2012) Effect of groundwater pH and ionic strength on strontium sorption in aquifersediments: implications for 90Sr mobility at contaminated nuclear sites. Appl Geochem 27:1482–1491

    CAS  Article  Google Scholar 

  30. 30.

    Bradbury MH, Baeyens B (2005) Experimental and modelling investigations on Na-illite: acid-base behaviour and the sorption of strontium, nickel, Europium and Uranyl. Paul ScherrerInstitut, Villigen, Switzerland, Nagra Tech. Rep. PSI 05–02.

  31. 31.

    Siroux B, Wissocq A, Beaucaire C, Latrille C, Petcut C, Calvaire J, Tabarant M, Benedetti MF, Reiller PE (2018) Adsorption of strontium and caesium onto an Na-illite and Na-illite/Na-smectite mixtures: implementation and application of a multi-site ion-exchange model. Appl Geochem 99:65–74

    CAS  Article  Google Scholar 

Download references


Dr. B.S. Tomar acknowledges the support from DAE towards Raja Ramanna Fellowship.

Author information



Corresponding author

Correspondence to Aishwarya S. Kar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patel, M.A., Kar, A.S., Tomar, B.S. et al. Retention behaviour of Ba(II) on argillaceous rocks of Cuddapah system. J Radioanal Nucl Chem 327, 229–237 (2021).

Download citation


  • Argillaceous clay
  • Cuddapah system
  • Barium
  • Sorption
  • Sorption modeling