Assessment of natural radioactivity and radiation hazards owing to coal fly ash and natural pozzolan Portland cements

Abstract

The natural radioactivity in coal fly ash and natural pozzolan Portland cement samples produced in Spain was measured by gamma spectrometry. Activity concentrations of 226Ra, 232Th and 40K ranged from 15.7 to 88.3 Bq kg−1, from 12.8 to 81.0 Bq kg−1 and from 37.0 to 678.0 Bq kg−1, respectively. The radiological hazards samples owing to the mentioned natural radioactivity were inferred from determinations of the activity concentration index, I, absorbed dose rate, Dext, and annual effective dose, Ep, which falls within 0.20 mSv to 0.87 mSv (coal-cement) and 0.18 mSv to 0.50 mSv (pozzolan-cement) (≤ 1 mSv, threshold criterion). Therefore, these cements are proper to be used for building purposes as result of their radiological assessment.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Sanjuán MA (2007) The blended cements in Spain from 2000 to 2005. Cemento-Hormigón 909:4–55 (in Spanish)

    Google Scholar 

  2. 2.

    Argiz C, Menéndez E, Sanjuán MA (2013) Effect of mixes made of coal bottom ash and fly ash on the mechanical strength and porosity of Portland cement. Mater Construcc 309:49–64. https://doi.org/10.3989/mc.2013.03911

    CAS  Article  Google Scholar 

  3. 3.

    Secretary of State for Energy of the Ministry for the Ecological Transition (2019) Energy in Spain 2017. National State Administration publications, Madrid, Spain (in Spanish) https://energia.gob.es/balances/Balances/LibrosEnergia/Libro-Energia-2017.pdf. Accessed January 7, 2020

  4. 4.

    Vom Berg W, Feuerborn H-J (2006) Coal combustion products in Europe–valuable raw materials for the construction industry. CPI 4:2-8 http://www.ecoba.org/evjm,media/downloads/CPI_report_english_0406_en.pdf. Accessed January 7, 2020

  5. 5.

    European Coal Combustion Products Association, ECOBA (2016) Statistics on Production and Utilisation of CCPs in 2016 in Europe (EU 15). ECOBA, Essen, Germany

  6. 6.

    International Energy Agency, IEA (2019) World Energy Outlook 2019. IEA Publications, Paris

    Google Scholar 

  7. 7.

    Argiz C, Menéndez E, Moragues A, Sanjuán MA (2015) Fly ash characteristics of Spanish coal-fired power plants. Afinidad 72:269–277

    CAS  Google Scholar 

  8. 8.

    Quintana B, Pedrosa MC, Vázquez-Canelas L, Santamaría R, Sanjuán MA, Puertas F (2018) A method for the complete analysis of NORM building materials by γ-ray spectrometry using HPGe detectors. Appl Radiat Isotopes 134:470–476. https://doi.org/10.1016/j.apradiso.2017.07.045

    CAS  Article  Google Scholar 

  9. 9.

    Font J, Casas M, Forteza R, Cerdà V, Garcías F (1993) Natural radioactive elements and heavy metals in coal, fly ash and bottom ash from a thermal power plant. J Environ Sci Health A28:2061–2073

    CAS  Google Scholar 

  10. 10.

    Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95

    CAS  Article  Google Scholar 

  11. 11.

    Zelinski RA, Budahn JR (1998) Radionuclidesin fly ash and bottom ash: improved characterization based on radiography and low energy gamma-ray spectrometry. Fuel 77:259–261

    Article  Google Scholar 

  12. 12.

    Pandit GG, Sahu SK, Puranik VD (2011) Natural radionuclides from coal fired thermal power plants e estimation of atmospheric release and inhalation risk. Radioprotection 46:S173–S179

    Article  Google Scholar 

  13. 13.

    Labrincha J, Puertas F, Schroeyers W, Kovler K, Pontikes Y, Nuccetelli C, Krivenko P, Kovalchuk O, Petropavlovsky O, Komljenovic M, Fidanchevski E, Wiegers R, Volceanov E, Gunay E, Sanjuán MA, Ducman V, Angjusheva B, Bajare D, Kovacs T, Bator G, Schreurs S, Aguiar J, Provis JL (2017) From NORM by-products to building materials. In: Schroeyers W (ed) Naturally occurring radioactive materials in construction, 1st edn. Woodhead Publishing, Sawston, Cambridge

    Google Scholar 

  14. 14.

    Coles DG, Ragaini RC, Ondov JM (1978) Behavior of radionuclides in western coal-fired plants. Environ Sci Technol 12:442–446

    CAS  Article  Google Scholar 

  15. 15.

    Cancio D, Baeza A, Robles B, Corbacho JA, Mora JC, Vasco J, Suáñez A, Guillén J, Miralles Y (2012) INT-04-27 Study of the radiological impact of thermal power plants. Technical Report Collection 34.2012. The Spanish Nuclear Safety Council (CSN), Madrid. Spain (in Spanish)

  16. 16.

    Trevisi R, Leonardi F, Risica S, Nuccetelli C (2018) Updated database on natural radioactivity in building materials in Europe. J Environ Radioact 187:90–105

    CAS  Article  Google Scholar 

  17. 17.

    Douglas GB, Butt CRM, Gray DJ (2011) Geology, geochemistry and mineralogy of the lignite-hosted Ambassador palaeochannel uranium and multi-element deposit, Gunbarrel Basin, Western Australia. Miner Deposita 46:761–787. https://doi.org/10.1007/s00126-011-0349-4

    CAS  Article  Google Scholar 

  18. 18.

    Sanjuán MÁ, Suarez-Navarro JA, Argiz C, Mora P (2019) Assessment of radiation hazards of white and grey Portland cements. J Radioanal Nucl Chem 322(2):1169–1177. https://doi.org/10.1007/s10967-019-06824-y

    CAS  Article  Google Scholar 

  19. 19.

    Chinchón-Payá S, Piedecausa B, Hurtado S, Sanjuán MA, Chinchón S (2011) Radiological impact of cement, concrete and admixtures in Spain. Radiat Meas 46:734–735

    Article  Google Scholar 

  20. 20.

    Sanjuán MA, Quintana B, Argiz C (2019) Coal bottom ash natural radioactivity in building materials. J Radioanal Nucl Chem 319(1):91–99. https://doi.org/10.1007/s10967-018-6251-0

    CAS  Article  Google Scholar 

  21. 21.

    De Sánchez RMI, Frías M (2013) Natural pozzolans in eco-efficient concrete. In: Pacheco-Torgal F, Jalali S, Labrincha J, John VM (eds) Eco-efficient concrete, 1st edn. Woodhead Publishing Series in Civil and Structural Engineering, Sawston. https://doi.org/10.1533/9780857098993.2.83

    Google Scholar 

  22. 22.

    Calleja J (1968) Pozzolans, Technical Report n. 281. Eduardo Torroja Institute for Construction Sciences (IETcc), Madrid, Spain (in Spanish)

  23. 23.

    Council Directive 2013/59/EURATOM (2014) Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Article 75 “Gamma radiation from building materials”. 2013, European Union. Official J Eur Union, 17.1.2014, L 13/31, pp 73

  24. 24.

    Asaduzzaman K, Mannan F, Khandaker MU, Farook MS, Elkezza A, Amin YB, Sharma S, Abu Kassim HB (2015) Assessment of natural radioactivity levels and potential radiological risks of common building materials used in Bangladeshi Dwellings. PLoS ONE 10(10):e0140667. https://doi.org/10.1371/journal.pone.0140667

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Battaglia A, Capra D, Queirazza G, Sampaolo A (1992) Rn exhalation rates from building materials and fly ash-containing concretes. In: Gauvin JP, Webb GAM, Des Rochers RD (eds) Proceeding of IRPA 8, 1st edn., International Radiation Protection Association, Montreal, Canada http://www.irpa.net/members/OCR_IRPA_8_Proceedings.pdf

  26. 26.

    Stoulos S, Manolopoulou M, Papastefanou C (2003) Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J Environ Radioact 69(3):225–240. https://doi.org/10.1016/S0265-931X(03)00081-X

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Turhan S (2008) Assessment of the natural radioactivity and radiological hazards in Turkish cement and its raw materials. J Environ Radioact 99:404–414

    CAS  Article  Google Scholar 

  28. 28.

    Papaefthymiou H, Gouseti O (2008) Natural radioactivity and associated radiation hazards in building materials used in Peloponnese, Greece. Radiat Meas 43:1453–1457

    CAS  Article  Google Scholar 

  29. 29.

    Turhan S, Arikan IH, Yücel B, Varinlioğlu A, Köse A (2010) Evaluation of the radiological safety aspects of utilization of Turkish coal combustion fly ash in concrete production. Fuel 89:2528–2535

    CAS  Article  Google Scholar 

  30. 30.

    Stojanovska Z, Nedelkovski D, Ristova M (2010) Natural radioactivity and human exposure by raw materials and end product from cement industry used as building materials. Radiat Meas 45:969–972

    CAS  Article  Google Scholar 

  31. 31.

    Damla N, Cevik U, Kobya AI, Celik A, Celik N, Van Grieken R (2010) Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey. J Hazard Mater 176:644–649

    CAS  Article  Google Scholar 

  32. 32.

    Dipartimento di Fisica, Università degli Studi di Cagliari (2010) La radioattività nei materiali da costruzione, Sintesi dei risultati. Sardegna Ricerche, Sardinia, Italy (in Italian) https://www.sardegnaricerche.it/documenti/13_143_20090217154817.pdf and http://www.p-arch.it/handle/11050/645. Accessed January 7, 2020

  33. 33.

    Turhan S, Arikan IH, Küçükcezzar R (2011) Radiological consequences of the use of fly ash in construction sector and geotechnical applications. Indoor Built Environ 20(2):253–258. https://doi.org/10.1177/1420326X10382951

    CAS  Article  Google Scholar 

  34. 34.

    Turhan S, Arikan IH, Kose A, Varinlioglu A (2011) Assessment of the radiological impacts of utilizing coal combustion fly ash as main constituent in the production of cement. Environ Monit Assess 177:555–561

    CAS  Article  Google Scholar 

  35. 35.

    Hamideen MS (2018) Natural radioactivity and associated radiation hazards in local portland and pozzolanic cements used in Jordan. Jordan J Phys 11(3):173–179

    Google Scholar 

  36. 36.

    United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1993) Sources and Effects of Ionizing Radiation, Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly. United Nations, New York, USA

  37. 37.

    United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000) Sources and Effects of Ionizing Radiation, Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly, with Scientific Annexes, Volume I: Sources. United Nations, New York, USA

  38. 38.

    Kovacs T, Bator G, Schroeyers W, Labrincha J, Puertas F, Hegedus M, Nicolaides D, Sanjuán MA, Krivenko P, Grubesa IN, Sas Z, Michalik B, Anagnostakis M, Barisic I, Nuccetelli C, Trevisi R, Croymans T, Schreurs S, Todorovic N, Vaiciukyniene D, Bistrickaite R, Tkaczyk A, Kovler K, Wiegers R, Doherty R (2017) From raw materials to NORM by-products. Chapter 6. In: Schroeyers W (ed.) Naturally Occurring Radioactive Materials in Construction, Integrating Radiation Protection in Reuse (COST Action TU-1301 NORM4BUILDING), 1st edn. Woodhead Publishing, Sawston

  39. 39.

    Sanjuán MA, Argiz C (2012) The new European standard on common cements specifications. EN-197-1:2011. Mater Constr 62:425–430

    Article  Google Scholar 

  40. 40.

    Mauring A, Gäfvert T (2013) Radon tightness of different sample sealing methods for gamma spectrometric measurements of 226Ra. Appl Radiat Isot 81:92–95

    CAS  Article  Google Scholar 

  41. 41.

    Yang B, Ha Y, Li A, Zhou H, Wang F, Li W (2013) Optimisation design of cylindrical containers for improving the detection efficiency of a high-purity germanium detector using the LabSOCS. J Radioanal Nucl Chem 298(3):1673–1677

    CAS  Article  Google Scholar 

  42. 42.

    Suarez-Navarro JA, Gascó C, Alonso MM, Blanco-Varela MT (2018) Use of Genie 2000 and Excel VBA to correct for γ-ray interference in the determination of NORM building material activity concentrations. Appl Radiat Isot 142:1–7

    CAS  Article  Google Scholar 

  43. 43.

    Markkanen M (1995) Radiation dose assessments for materials with elevated natural radioactivity, Report STUK-B-STO 32, Finnish centre for radiation and nuclear safety, Helsinki, Finland, p 38

  44. 44.

    Directorate-General Environment, European Commission (2001) Radiation protection 122, Practical use of the concepts of clearance and exemption, Part II, Application of the concepts of exemption and clearance to natural radiation sources. Office for official publications of the European Communities, Luxembourg https://ec.europa.eu/energy/sites/ener/files/documents/122_part2.pdf. Accessed January 7, 2020

  45. 45.

    Puertas F, Alonso MM, Torres-Carrasco M, Rivilla P, Gasco C, Yagüe L, Suárez JA, Navarro N (2015) Radiological characterization of anhydrous/hydrated cements and geopolymers. Constr Build Mater 101:1105–1112. https://doi.org/10.1016/j.conbuildmat.2015.10.074

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the coordination tasks of Marina Romay at OFICEMEN, and the participation of the Spanish cement companies’ members of that Association. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miguel Ángel Sanjuán.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanjuán, M.Á., Suárez-Navarro, J.A., Argiz, C. et al. Assessment of natural radioactivity and radiation hazards owing to coal fly ash and natural pozzolan Portland cements. J Radioanal Nucl Chem (2020). https://doi.org/10.1007/s10967-020-07263-w

Download citation

Keywords

  • Fly ash Portland cement
  • Natural pozzolan Portland cement
  • Radioactivity
  • Activity concentration index
  • Effective dose rate