Free-radical scavenging activity of radioprotectors: comparison between clinically used radioprotectors and natural antioxidants

Abstract

Clinically used radioprotectors, amifostine and cysteamine, have been shown to possess free-radical scavenging activities. Natural antioxidants also possess free-radical scavenging activities, some of which have been shown to have radioprotective capability. We carried out a quantitative determination of the scavenging abilities in amifostine and cysteamine and compared the potencies with natural antioxidants by using multiple free-radical scavenging method. Overall, amifostine and cysteamine showed scavenging activity as potent as natural antioxidants. We found a correlation between scavenging activity and radioprotective efficiency that was previously determined in rat thymocytes. These correlations are indicative that natural antioxidants can be effective radioprotectors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Anuranjani BM (2014) Concerted action Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines—implication in modification of radiation damage. Redox Biol 2:832–846

    CAS  Article  Google Scholar 

  2. 2.

    Zhou R, Zhang H, Wang Z, Li J, Zhou X, Gan L, Liu Y (2014) The effects of X-ray radiation on the eye development of zebrafish. Hum Exp Toxicol 33:1040–1050

    CAS  Article  Google Scholar 

  3. 3.

    Azzam EI, Jay-Gerin JP, Pain D (2012) Ionizing radiation-induced metabolic oxidative stress and pro-loged cell injury. Cancer Lett 327:48–60

    CAS  Article  Google Scholar 

  4. 4.

    Szumiel I (2015) Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: the pivotal role of mitochondria. Int J Radiat Biol 91:1–12

    CAS  Article  Google Scholar 

  5. 5.

    Nakano T, Xu X, Salem AM, Shoulkamy MI, Ide H (2017) Radiation-induced DNA-protein cross-links: mechanisms and biological significance. Free Radiat Biol Med 107:136–145

    CAS  Article  Google Scholar 

  6. 6.

    Kouvaris JR, Kouloulias VE, Vlahos LJ (2007) Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist 12:738–747

    CAS  Article  Google Scholar 

  7. 7.

    Sekine-Suzuki E, Nakanishi I, Shimokawa T, Ueno M, Matsumoto K, Murakami T (2013) High-throughput screening of radioprotectors using rat thymocytes. Anal Chem 85:7650–7653

    CAS  Article  Google Scholar 

  8. 8.

    Yahyapour R, Shabeeb D, Cheki M, Musa AE, Farhood B, Rezaeyan A, Amini P, Fallah H, Najafi M (2018) Radiation protection and mitigation by natural antioxidants and flavonoids: implications to radiotherapy and radiation disasters. Curr Mol Pharm 11:285–304

    CAS  Article  Google Scholar 

  9. 9.

    Ertekin MV, Sezen O (2007) Radioprotective effects of antioxidants. Panglossi HV (ed) Nova Sci Publishers, Inc, New York

  10. 10.

    Oowada S, Endo N, Kameya H, Shimmei M, Kotake Y (2012) Multiple free-radical scavenging capacity in serum. J Clin Biochem Nutr 51:117–121

    CAS  Article  Google Scholar 

  11. 11.

    Sueishi Y, Hori M, Ishikawa M, Matsu-ura K, Kamogawa E, Honda Y, Kita M, Ohara K (2014) Scavenging rate constants of hydrophilic antioxidants against multiple reactive oxygen species. J Clin Biochem Nutr 54:67–74

    CAS  Article  Google Scholar 

  12. 12.

    Sueishi Y, Nii R, Kakizaki N (2017) Resveratrol analogues like piceatannol are potent antioxidants as quantitatively demonstrated through the high scavenging ability against reactive oxygen species and methyl radical. Bioorg Med Chem Lett 27:5203–5206

    CAS  Article  Google Scholar 

  13. 13.

    Sueishi Y, Nii R (2018) Monoterpene’s multiple free radical scavenging capacity as compared with the radioprotective agent cysteamine and amifostine. Bioorg Med Chem Lett 28:3031–3033

    CAS  Article  Google Scholar 

  14. 14.

    Sueishi Y, Masamoto H, Kotake Y (2019) Heat treatments of ginger root modify but not diminish its antioxidant activity as measured with multiple free radical scavenging (MULTIS) method. J Clin Biochem Nutr 64:143–147

    Article  Google Scholar 

  15. 15.

    Kohri S, Fujii H, Oowada S, Endo N, Sueishi Y, Kusakabe M, Shimmei M, Kotake Y (2009) An oxygen radical absorbance capacity-like assay that directly quantifies the antioxidant’s scavenging capacity against AAPH-derived free radicals. Anal Biochem 386:167–171

    CAS  Article  Google Scholar 

  16. 16.

    Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsh-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J Agric Food Chem 51:3273–3279

    CAS  Article  Google Scholar 

  17. 17.

    Aprotosoaie AC, Trifan A, Gille E, Petreus T, Bordeianu G, Miron A (2015) Can phytochemicals be a bridge to develop new radioprotective agents? Phytochem Rev 14:555–566

    CAS  Article  Google Scholar 

  18. 18.

    Sekine-Suzuki E, Nakanishi I, Imai K, Ueno M, Shimokawa T, Matsumoto K, Fukuhara K (2018) Efficient protective activity of a planar catechin analogue against radiation-induced apoptosis in rat thymocytes. RSC Adv 8:10158–10162

    CAS  Article  Google Scholar 

  19. 19.

    Aizawa Y, Sunada S, Hirakawa H, Fujimori A, Kato TA, Uesaka M (2018) Design and evaluation of a novel flavonoid-based radioprotective agent utilizing monoglucosyl rutin. J Radiat Res 59:272–281

    CAS  Article  Google Scholar 

  20. 20.

    Hall EJ, Giaccia AJ (eds) (2012) Radiobiology for the radiologist, 7th edn. Lippincott Williams & Wilkins, Philadelphia, pp 3–11

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Yashige Kotake for helpful discussion and critical reading of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoshimi Sueishi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sueishi, Y., Fujii, T. & Nii, R. Free-radical scavenging activity of radioprotectors: comparison between clinically used radioprotectors and natural antioxidants. J Radioanal Nucl Chem (2020). https://doi.org/10.1007/s10967-020-07258-7

Download citation

Keywords

  • Natural antioxidant
  • Antioxidant ability
  • Radioprotective effect
  • MULTIS
  • ESR spin trapping