Theoretical study on structures of Am(III) carbonate complexes

Abstract

In order to elucidate the coordination structure and bonding properties between Am(III) and carbonate ion (CO32−), the geometric and electronic structures of the Am(III) carbonate complexes were systematically studied by scalar-relativistic density function theory. The bonding nature between Am atom and ligands was explored by the analyses of the natural bond orbital, quantum theory of atoms-in-molecules and electron localization function. These results indicate that the Am–Oc bonds are σ character with ionic interaction. Thermodynamic analysis shows that [Am(CO3)3(H2O)2]3− was the most stable complex. This work can provide insight into the coordination and bonding nature of the Am(III) carbonate complexes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Clark DL, Hobart DE, Neu MP (1995) Actinide carbonate complexes and their importance in actinide environmental chemistry. Chem Rev 95(1):25–48

    CAS  Google Scholar 

  2. 2.

    Müller M, Acker M, Taut S, Bernhard G (2010) Complex formation of trivalent americium with salicylic acid at very low concentrations. J Radioanal Nucl Chem 286(1):175–180

    Google Scholar 

  3. 3.

    Vercouter T, Vitorge P, Trigoulet N, Giffaut E, Moulin C (2005) Eu (CO3)33− and the limiting carbonate complexes of other M3+ f-elements in aqueous solutions: a solubility and TRLFS study. New J Chem 29(4):544–553

    CAS  Google Scholar 

  4. 4.

    Clark DL, Conradson SD, Ekberg SA, Hess NJ, Neu MP, Palmer PD, Runde W, Tait CD (1996) EXAFS studies of pentavalent neptunium carbonato complexes. Structural elucidation of the principal constituents of neptunium in groundwater environments. J Am Chem Soc 118(8):2089–2090

    CAS  Google Scholar 

  5. 5.

    Fanghanel T, Konnecke T, Weger H, Paviet-Hartmann P, Neck V, Kim JI (1999) Thermodynamics of Cm(III) in concentrated salt solutions: carbonate complexation in NaCl solution at 25℃. J Solut Chem 28(4):447–462

    CAS  Google Scholar 

  6. 6.

    Gagliardi L, Grenthe I, Roos BO (2001) Theoretical study of the structure of tricarbonatodioxouranate. Inorg Chem 40(13):2976–2978

    CAS  PubMed  Google Scholar 

  7. 7.

    Ikeda-Ohno A, Tsushima S, Takao K, Rossberg A, Funke H, Scheinost AC, Bernhard G, Yaita T, Hennig C (2009) Neptunium carbonato complexes in aqueous solution: an electrochemical, spectroscopic, and quantum chemical study. Inorg Chem 48(24):11779–11787

    CAS  PubMed  Google Scholar 

  8. 8.

    Gendron F, Pritchard B, Bolvin H, Autschbach J (2014) Magnetic resonance properties of actinyl carbonate complexes and plutonyl(VI)-tris-nitrate. Inorg Chem 53(16):8577–8592

    CAS  PubMed  Google Scholar 

  9. 9.

    Gendron F, Autschbach J (2016) Ligand NMR chemical shift calculations for paramagnetic metal complexes: 5f1 vs 5f2 actinides. J Comput Chem 12(11):5309–5321

    CAS  Google Scholar 

  10. 10.

    Gendron F, Sharkas K, Autschbach J (2015) Calculating NMR chemical shifts for paramagnetic metal complexes from first-principles. J Phys Chem Lett 6(12):2183–2188

    CAS  PubMed  Google Scholar 

  11. 11.

    Coleman JS, Keenan TK, Jones LH, Carnall WT, Penneman RA (1963) Preparation and properties of americium(VI) in aqueous carbonate solutions. Inorg Chem 2(2):58–61

    CAS  Google Scholar 

  12. 12.

    Lan JH, Chai ZF, Shi WQ (2017) A combined DFT and molecular dynamics study of U(VI)/calcite interaction in aqueous solution. Sci Bull 62(15):1064–1073

    CAS  Google Scholar 

  13. 13.

    Wang CZ, Lan JH, Wu QY, Luo Q, Zhao YL, Wang XK, Chai ZF, Shi WQ (2014) Theoretical insights on the interaction of uranium with amidoxime and carboxyl groups. Inorg Chem 53(18):9466–9476

    CAS  PubMed  Google Scholar 

  14. 14.

    Keenan TK, Kruse FH (1964) Potassium double carbonates of pentavalent neptunium, plutonium and americium. Inorg Chem 3(9):1231–1232

    CAS  Google Scholar 

  15. 15.

    Ikeda A, Hennig C, Tsushima S, Takao K, Ikeda Y, Scheinost AC, Bernhard G (2007) Comparative study of uranyl(VI) and -(V) carbonato complexes in an aqueous solution. Inorg Chem 46(10):4212–4219

    CAS  PubMed  Google Scholar 

  16. 16.

    Spezia R, Jeanvoine Y, Vuilleumier R (2014) Developing polarizable potential for molecular dynamics of Cm(III)-carbonate complexes in liquid water. J Mol Model 20(8):2398

    PubMed  Google Scholar 

  17. 17.

    Kim JI, Klenze R, Wimmer H, Runde W, Hauser W (1994) A study of the carbonate complexation of CmIII and EuIII by time-resolved laser fluorescence spectroscopy. J Alloy Compd 213–214:333–340

    Google Scholar 

  18. 18.

    Janicki R, Lindqvist-Reis P (2018) Eu(III) and Cm(III) tetracarbonates—in the quest for the limiting species in solution. Dalton Trans 47(7):2393–2405

    CAS  PubMed  Google Scholar 

  19. 19.

    Wruck DA, Palmer CEA, Silva RJ (1999) A study of americium (III) carbonate complexation at elevated temperatures by pulsed laser photoacoustic spectroscopy. Radiochim Acta 85(1–2):21–24

    CAS  Google Scholar 

  20. 20.

    Lemire RJ, Boyer GD, Campbell AB (1993) The solubilities of sodium and potassium dioxoneptunium(V) carbonate hydrates at 30, 50 and 75°C. Radiochim Acta 61(2):57–63

    CAS  Google Scholar 

  21. 21.

    Bourges JY, Guillaume B, Koehly G, Hobart DE, Peterson JR (1983) Coexistence of americium in four oxidation states in sodium carbonate-sodium bicarbonate medium. Inorg Chem 22(8):1179–1184

    CAS  Google Scholar 

  22. 22.

    Fedosseev AM, Gogolev AV, Charushnikova IA, Shilov VP (2011) Tricarbonate complex of hexavalent Am with guanidinium: Synthesis and structural characterization of [C(NH2)3]4[Am O2(CO3)3]·2H2O, comparison with [C(NH2)3]4[AnO2(CO3)3](An = U, Np, Pu). Radiochim Acta 99(11):679–686

    CAS  Google Scholar 

  23. 23.

    Morss LR, Edelstein NM, Katz JJ, Fuger J (2006) The chemistry of the actinide and transactinide elements, vol 2. Springer, Dordrecht

    Google Scholar 

  24. 24.

    Meinrath G, Kim JI (1991) The carbonate complexation of the Am (III) ion. Radiochim Acta 52(1):29–34

    Google Scholar 

  25. 25.

    Nitsche H, Stanifer EM (1989) Americium (lll) carbonate complexation in aqueous perchlorate solution. Radiochim Acta 46(4):185–190

    CAS  Google Scholar 

  26. 26.

    Bernkopf MF (1984) Hydrolysereaktionen und Karbonatkomplexierung von dreiwertigem Americium im natürlichen aquatischen System. Ph.D Thesis, Technische Universität München

  27. 27.

    Nash KL, Cleveland JM, Rees TF (1988) Speciation patterns of actinides in natural waters: a laboratory investigation. J Environ Radioact 7(2):131–157

    CAS  Google Scholar 

  28. 28.

    Gaussian 16, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman GR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam MJ, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, and Fox DJ (2016) Gaussian, Inc. Wallingford, CT

  29. 29.

    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    CAS  Google Scholar 

  30. 30.

    Lee CT, Yang WT, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    CAS  Google Scholar 

  31. 31.

    Vallet V, Macak P, Wahlgren U, Grenthe I (2006) Actinide chemistry in solution, quantum chemical methods and models. Theor Chem Acc 115(2):145–160

    CAS  Google Scholar 

  32. 32.

    Schreckenbach G, Hay PJ, Martin RL (1999) Density functional calculations on actinide compounds: survey of recent progress and application to [UO2X4]2− (X = F, Cl, OH) and AnF6 (An = U, Np, Pu). J Comput Chem 20(1):70–90

    CAS  Google Scholar 

  33. 33.

    Küchle W, Dolg M, Stoll H, Preuss H (1994) Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J Chem Phys 100(10):7535–7542

    Google Scholar 

  34. 34.

    Cao X, Dolg M, Stoll H (2003) Valence vasis sets for relativistic energy-consistent small-core actinide pseudopotentials. J Chem Phys 118(2):487–496

    CAS  Google Scholar 

  35. 35.

    Cao X, Dolg M (2004) Segmented contraction scheme for small-core actinide pseudopotential basis sets. J Mol Struct (THEOCHEM) 673(1–3):203–209

    CAS  Google Scholar 

  36. 36.

    Jeanvoine Y, Miro P, Martelli F, Cramer CJ, Spezia R (2012) Electronic structure and bonding of lanthanoid(III) carbonates. Phys Chem Chem Phys 14(43):14822–14831

    CAS  PubMed  Google Scholar 

  37. 37.

    Keith JM, Batista ER (2012) Theoretical examination of the thermodynamic factors in the selective extraction of Am3+ from Eu3+ by dithiophosphinic acids. Inorg Chem 51(1):13–15

    CAS  PubMed  Google Scholar 

  38. 38.

    Shamov GA, Schreckenbach G (2005) Density functional studies of actinyl aquo complexes studied using small-core effective core potentials and a scalar four-component relativistic method. J Phys Chem A 109(48):10961–10974

    CAS  PubMed  Google Scholar 

  39. 39.

    Shamov GA, Schreckenbach G, Martin RL, Hay PJ (2008) Crown ether inclusion complexes of the early actinide elements, [AnO2(18-crown-6)]n+, An = U, Np, Pu and n = 1, 2: A relativistic density functional study. Inorg Chem 47(5):1465–1475

    CAS  PubMed  Google Scholar 

  40. 40.

    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926

    CAS  Google Scholar 

  41. 41.

    Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102(24):7211–7218

    CAS  Google Scholar 

  42. 42.

    Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83(2):735–746

    CAS  Google Scholar 

  43. 43.

    Carpenter JE, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct (THEOCHEM) 169:41–62

    Google Scholar 

  44. 44.

    Baerends JA EJ, Bérces A, Bo C, Boerrigter LC PM, Chong DP, Deng L, Dickson DEE RM, van Faassen M, Fan L, Fischer CFG TH, van Gisbergen SJA, Groeneveld OVG JA, Grüning M, Harris FE, Hoek HJ PVD, Jensen L, van Kessel G, Kootstra EvL F, McCormack DA, Michalak A, Osinga SP VP, Philipsen PHT, Post D, Pye WR CC, Ros P, Schipper PRT, Schreckenbach JGS G, Sola M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visser FW O, van Wezenbeek E, Wiesenekker G, Wolff TKW SK, Yakovlev AL and Ziegler T, ADF (2013) Revision 2013.01 HWSC. Scientific Computing and Modelling NV, Amsterdam, The Netherlands

  45. 45.

    Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc 99(6):391–403

    CAS  Google Scholar 

  46. 46.

    Te Velde GT, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967

    Google Scholar 

  47. 47.

    Bridgeman AJ, Cavigliasso G, Ireland LR, Rothery J (2001) The Mayer bond order as a tool in inorganic chemistry. J Chem Soc Dalton Trans 14:2095–2108

    Google Scholar 

  48. 48.

    Gopinathan MS, Jug K (1983) Valency. 1. A quantum chemical definition and properties. Theor Chim Acta 63(6):497–509

    CAS  Google Scholar 

  49. 49.

    Michalak A, DeKock RL, Ziegler T (2008) Bond multiplicity in transition-metal complexes: applications of two-electron valence indices. J Phys Chem A 112(31):7256–7263

    CAS  PubMed  Google Scholar 

  50. 50.

    Nalewajski RF, Formosinho SJ, Varandas AJC, Mrozek J (1994) Quantum mechanical valence study of a bond-breaking–bond-forming process in triatomic systems. Int J Quantum Chem 52(5):1153–1176

    CAS  Google Scholar 

  51. 51.

    Nalewajski RF, Köster AM, Jug K (1993) Chemical valence from the two-particle density matrix. Theor Chem Acc 85(6):463–484

    CAS  Google Scholar 

  52. 52.

    Van Lenthe E, Baerends EJ (2003) Optimized slater-type basis sets for the elements 1–118. J Comput Chem 24(9):1142–1156

    PubMed  Google Scholar 

  53. 53.

    Lenthe EV, Baerends EJ, Snijders JG (1993) Relativistic regular two-component hamiltonians. J Chem Phys 99(6):4597–4610

    Google Scholar 

  54. 54.

    Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    PubMed  Google Scholar 

  55. 55.

    Xi J, Lan J-H, Lu G-W, Zhao Y-L, Chai Z-F, Shi W-Q (2014) A density functional theory study of complex species and reactions of Am(III)/Eu(III) with nitrate anions. Mol Simul 40(5):379–386

    CAS  Google Scholar 

  56. 56.

    Pyykkö P (2015) Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J Phys Chem A 119(11):2326–2337

    PubMed  Google Scholar 

  57. 57.

    Bader RFW (1985) Atoms in molecules. Acc Chem Res 18(1):9–15

    CAS  Google Scholar 

  58. 58.

    Arnold PL, Turner ZR, Kaltsoyannis N, Pelekanaki P, Bellabarba RM, Tooze RP (2010) Covalency in Ce(IV) and U(IV) halide and N-heterocyclic carbene bonds. Chemistry 16(31):9623–9629

    CAS  PubMed  Google Scholar 

  59. 59.

    Vlaisavljevich B, Miró P, Cramer CJ, Gagliardi L, Infante I, Liddle ST (2011) On the nature of actinide- and lanthanide-metal bonds in heterobimetallic compounds. Chemistry 17(30):8424–8433

    CAS  PubMed  Google Scholar 

  60. 60.

    Jones MB, Gaunt AJ, Gordon JC, Kaltsoyannis N, Neu MP, Scott BL (2013) Uncovering f-element bonding differences and electronic structure in a series of 1:3 and 1:4 complexes with a diselenophosphinate ligand. Chem Sci 4(3):1189–1203

    CAS  Google Scholar 

  61. 61.

    Zaiter A, Amine B, Bouzidi Y, Belkhiri L, Boucekkine A, Ephritikhine M (2014) Selectivity of azine ligands toward lanthanide(III)/actinide(III) differentiation: a relativistic DFT based rationalization. Inorg Chem 53(9):4687–4697

    CAS  PubMed  Google Scholar 

  62. 62.

    Bader RFW (2009) Bond paths are not chemical bonds. J Phys Chem A 113(38):10391–10396

    CAS  PubMed  Google Scholar 

  63. 63.

    Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H⋯F–Y systems. J Chem Phys 117(12):5529–5542

    CAS  Google Scholar 

  64. 64.

    Bankiewicz B, Matczak P, Palusiak M (2012) Electron density characteristics in bond critical point (QTAIM) versus interaction energy components (SAPT): the case of charge-assisted hydrogen bonding. J Phys Chem A 116(1):452–459

    CAS  PubMed  Google Scholar 

  65. 65.

    Bader RFW, Matta CF (2001) Bonding to titanium. Inorg Chem 40(22):5603–5611

    CAS  PubMed  Google Scholar 

  66. 66.

    Cremer D, Kraka E (1984) Chemical bonds without bonding electron density—does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed 23(8):627–628

    Google Scholar 

  67. 67.

    Cho S, Seo JH, Kim SH, Song S, Jin Y, Lee K, Suh H, Heeger AJ (2008) Effect of substituted side chain on donor–acceptor conjugated copolymers. Appl Phys Lett 93(26):263301

    Google Scholar 

  68. 68.

    Theander M, Anderson MR, Inganas O (1999) Photoluminescence properties of polythiophenes. Synthetic Met 101(1–3):331–332

    CAS  Google Scholar 

  69. 69.

    Zhang X, Wu Q, Lan J, Yuan L, Xu C, Chai Z, Shi W (2019) Highly selective extraction of Pu (IV) and Am (III) by N, N'-diethyl-N, N'-ditolyl-2,9-diamide-1,10-phenanthroline ligand: An experimental and theoretical study. Sep Purif Technol 223:274–281

    CAS  Google Scholar 

  70. 70.

    Wu Q-Y, Song Y-T, Ji L, Wang C-Z, Chai Z-F, Shi W-Q (2017) Theoretically unraveling the separation of Am(III)/Eu(III): insights from mixed N, O-donor ligands with variations of central heterocyclic moieties. Phys Chem Chem Phys 19(39):26969–26979

    CAS  PubMed  Google Scholar 

  71. 71.

    Liang Y-N, Yang X, Ding S, Li S, Wang F, Chai Z, Wang D (2015) Computational thermodynamic study on the complexes of Am(III) with tridentate N-donor ligands. New J Chem 39(10):7716–7729

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11875058, U1867205), the National Science Fund for Distinguished Young Scholars (21925603), the Science Challenge Project (TZ2016004).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qun-Yan Wu or Yue-Zhou Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 539 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wu, Q., Wang, C. et al. Theoretical study on structures of Am(III) carbonate complexes. J Radioanal Nucl Chem (2020). https://doi.org/10.1007/s10967-020-07254-x

Download citation

Keywords

  • Americium ion
  • Carbonate ion
  • Density functional theory
  • Bonding nature