An intensive exploration on structure transformation of talc under γ-ray irradiation at 0–1000 kGy


To have a clear cognition on whether clay could be used for disposal of high level radioactive waste efficiently or not, in this work, talc was irradiated by Co-60 γ ray in air at a dose rate of 54 Gy/min with doses up to 1000 kGy. Then, variations in chemical/crystalline structure and intrinsic mechanism were explored. Main results show talc occurred dehydroxylation and lattice shrink. Under 0–1000 kGy irradiation, shrink range in (002) lattice plane was near 1.5% close to 0.14 Å. Main mechanisms involve framework/Mg–OH bond break and H2O radiolysis. Framework break seems more important, Mg–OH bond break and H2O radiolysis are secondary. It seems talc exhibits poor stability to radiation. Clay matrix mightn’t ensure the effectiveness of disposal project, the effect of nuclear accident to environment can be serious.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Hurtado-Bermudez S, Villa-Alfageme M, Mas JL, Alba MD (2018) Comparison of solvent extraction and extraction chromatography resin techniques for uranium isotopic characterization in high-level radioactive waste and barrier materials. Appl Radiat Isot 137:177–183

    CAS  Article  Google Scholar 

  2. 2.

    Kaufhold S, Dohrmann R (2016) Distinguishing between more and less suitable bentonites for storage of high-level radioactive waste. Clay Min 51(2):289–302

    CAS  Article  Google Scholar 

  3. 3.

    Fujii K, Ochi K, Ohbuchi A, Koike Y (2018) Evaluation of physicochemical properties of radioactive cesium in municipal solid waste incineration fly ash by particle size classification and leaching tests. J Environ Manag 217:157–163

    CAS  Article  Google Scholar 

  4. 4.

    Tashiro Y, Nakao A, Wagai R, Yanai J, Kosaki T (2018) Inhibition of radiocesium adsorption on 2:1 clay minerals under acidic soil environment: effect of organic matter vs. hydroxy aluminum polymer. Geoderma 319:52–60

    CAS  Article  Google Scholar 

  5. 5.

    Yin X, Horiuchi N, Utsunomiya S, Ochiai A, Takahashi H, Inaba Y, Wang X, Ohnuki T, Takeshita K (2018) Effective and efficient desorption of Cs from hydrothermal-treated clay minerals for the decontamination of fukushima radioactive soil. Chem Eng J 333:392–401

    CAS  Article  Google Scholar 

  6. 6.

    Cosenza P, Prêt D, Zamora M (2015) Effect of the local clay distribution on the effective electrical conductivity of clay rocks. J Geophys Res Solid Earth. 120:145–168

    Article  Google Scholar 

  7. 7.

    Morichon E, Beaufort D, Allard T, Quirt D (2010) Tracing past migrations of uranium in paleoproterozoic basins: new insights from radiation-induced defects in clay minerals. Geology 38:983–986

    CAS  Article  Google Scholar 

  8. 8.

    Zhang M, Hui Q, Lou X, Redfern SAT, Salje EKH, Tarantino SC (2006) Dehydroxylation, proton migration, and structural changes in heated talc: an infrared spectroscopic study. Am Miner 91(5–6):816–825

    CAS  Article  Google Scholar 

  9. 9.

    Loh E (1973) Optical vibrations in sheet silicates. J Phys-Condes Matter 6:1091–1104

    CAS  Google Scholar 

  10. 10.

    Kloprogge JT, Frost RL, Rintoul L (1999) Single crystal raman microscopic study of the asbestos mineral chrysotile. Phys Chem Chem Phys 1:2559–2564

    CAS  Article  Google Scholar 

  11. 11.

    Sidorov TA (2007) Raman spectra and molecular structure of silicates. Russ J Inorg Chem 52:1586–1594

    Article  Google Scholar 

  12. 12.

    Baita C, Lottici PP, Salvioli-Mariani E, Vandenabeele P, Librenti M, Antonelli F, Bersani D (2014) An integrated raman and petrographic characterization of italian mediaeval artifacts inpietra ollare(Soapstone). J Raman Spectrosc 45:114–122

    CAS  Article  Google Scholar 

  13. 13.

    Rashchenko SV, Likhacheva AY, Goryainov SV, Krylov AS, Litasov KD (2016) In situ spectroscopic study of water intercalation into talc: new features of 10 Å phase formation. Am Miner 101:431–436

    Article  Google Scholar 

  14. 14.

    Wang A, Freeman JJ, Jolliff BL (2015) Understanding the raman spectral features of phyllosilicates. J Raman Spectrosc 46:829–845

    CAS  Article  Google Scholar 

  15. 15.

    Blaha JJ, Rosasco GJ (1978) Raman microprobe spectra of individual microcrystals and fibers of talc, tremolite, and related silicate minerals. Anal Chem 50:892–896

    CAS  Article  Google Scholar 

  16. 16.

    Sharma SK, Misra AK, Lucey PG, Lentz RC (2009) A combined remote raman and libs instrument for characterizing minerals with 532 nm laser excitation. Spectrochim Acta, Part A 73:468–476

    Article  Google Scholar 

  17. 17.

    Holtz M, Solin SA, Pinnavaia TJ (1993) Effect of pressure on the raman vibrational modes of layered aluminosilicate compounds. Phys Rev B 48:13312–13317

    CAS  Article  Google Scholar 

  18. 18.

    Rosasco GJ, Blaha JJ (1980) Raman microprobe spectra and vibrational mode assignments of talc. Appl Spectrosc 34:140–144

    CAS  Article  Google Scholar 

  19. 19.

    Chen R, Lv J, Feng J (2014) Characterization of paint by fourier-transform infrared spectroscopy, raman microscopy, and scanning electron microscopy-energy dispersive x-ray spectroscopy. Anal Lett 48:1502–1510

    Article  Google Scholar 

  20. 20.

    Reynard B, Bezacier L, Caracas R (2015) Serpentines, talc, chlorites, and their high-pressure phase transitions: a raman spectroscopic study. Phys Chem Miner 42:641–649

    CAS  Article  Google Scholar 

  21. 21.

    Wang H, Sun Y, Chu J, Wang X, Zhang M (2020) Crystalline structure variation within phlogopite, muscovite and talc under 0–1000 kGy γ ray irradiation: a clear dependence on intrinsic characteristic. Appl Clay Sci 187:105475

    CAS  Article  Google Scholar 

  22. 22.

    Wang H, Xu L, Li R, Hu J, Wang M, Wu G (2016) Improving the creep resistance and tensile property of UHMWPE sheet by radiation cross-linking and annealing. Radiat Phys Chem 125:41–49

    Article  Google Scholar 

  23. 23.

    Bosn K, Gangurly J (1994) Thermogravimetric study of the dehydration kinetics of talc. Am Miner 79:692–699

    Google Scholar 

  24. 24.

    Chon C-M, Lee C-K, Song Y, Kim SA (2006) Structural changes and oxidation of ferroan phlogopite with increasing temperature: in situ neutron powder diffraction and fourier transform infrared spectroscopy. Phys Chem Miner 33:289–299

    CAS  Article  Google Scholar 

  25. 25.

    Tutti F, Lazor P (2008) Temperature-induced phase transition in phlogopite revealed by raman spectroscopy. J Phys Chem Solids 69:2535–2539

    CAS  Article  Google Scholar 

  26. 26.

    Hansen EL, Hemmen H, Fonseca DM, Coutant C, Knudsen KD, Plivelic TS, Bonn D, Fossum JO (2012) Swelling transition of a clay induced by heating. Sci Rep 2:618

    CAS  Article  Google Scholar 

  27. 27.

    Galamboš M, Daňo M, Rosskopfová O, Šeršeň F, Kufčáková J, Adamcová R, Rajec P (2012) Effect of gamma-irradiation on adsorption properties of Slovak bentonites. J Radioanal Nucl Chem 292:481–492

    Article  Google Scholar 

  28. 28.

    Ho TA, Greathouse JA, Lee AS, Criscenti LJ (2018) Enhanced ion adsorption on mineral nanoparticles. Langmuir 34:5926–5934

    CAS  Article  Google Scholar 

Download references


We are grateful to the Co-60 γ ray source operating team in Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (Mianyang, China) for help in γ ray irradiation. This work was partially supported by China Postdoctoral Science Foundation (Grant Nos. 2018M633634XB).

Author information



Corresponding authors

Correspondence to Honglong Wang or Ming Zhang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Sun, Y., Chu, J. et al. An intensive exploration on structure transformation of talc under γ-ray irradiation at 0–1000 kGy. J Radioanal Nucl Chem 325, 33–42 (2020).

Download citation


  • Talc
  • Clay
  • HLRW disposal
  • γ ray irradiation
  • Dehydroxylation
  • H2O radiolysis