Skip to main content
Log in

Response overshoot: a challenge for the application of polymer gel dosimeters

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this research response overshoots of the half irradiated PAGAT polymer gel dosimeter at variations post irradiation times were traced out. Results showed that 5 h after irradiation the measured dose by polymer gel dosimeter in boundary region are compatible with delivered dose. However, more elapsed time post irradiation caused misevaluation of dose. It was observed that response overshoot caused a maximum error of 28% in dose evaluation. It was concluded that more care is necessary when a high gradient dose distribution is evaluated by means of a polymer gel dosimeter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maryanski MJ, Gore JC, Kennan RP, Schulz RJ (1993) NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI. Magn Reson Imaging 11:253–258

    Article  CAS  PubMed  Google Scholar 

  2. Yao C-H, Chang T-H, Tsai M-J, Lai Y-C, Chen Y-A, Chang Y-J, Chen C-H (2017) Dose verification of volumetric modulation arc therapy by using a NIPAM gel dosimeter combined with a parallel-beam optical computed tomography scanner. J Radioanal Nucl Chem 311(2):1277–1286

    Article  CAS  Google Scholar 

  3. Kairn T, Taylor ML, Crowe SB, Dunn L, Franich RD, Kenny J, Knight RT, Trapp JV (2012) Monte Carlo verification of gel dosimetry measurements for stereotactic radiotherapy. Phys Med Biol 57(11):3359

    Article  CAS  PubMed  Google Scholar 

  4. Farhood B, Geraily G, Abtahi SMM (2019) A systematic review of clinical applications of polymer gel dosimeters in radiotherapy. Appl Radiat Isot 143:47–59

    Article  CAS  PubMed  Google Scholar 

  5. Zeidan OA, Sriprisan SI, Lopatiuk-Tirpak O, Kupelian PA, Meeks SL, Anderson MD, Hsi WC, Li Z, Palta JR, Maryanski MJ (2010) Dosimetric evaluation of a novel polymer gel dosimeter for proton therapy. Med Phys 37(5):2145–2152

    Article  CAS  PubMed  Google Scholar 

  6. Ramm U, Weber U, Bock M, Krämer M, Bankamp A, Damrau M, Thilmann C, Böttcher HD, Schad LR, Kraft G (2000) Three-dimensional BANGTM gel dosimetry in conformal carbon ion radiotherapy. Phys Med Biol 45:N95–N102

    Article  CAS  PubMed  Google Scholar 

  7. da Silveira MC, Sampaio FGA, Petchevist PCD, de Oliveira AL, de Almeida A (2011) Mycosis Fungoides electron beam absorbed dose distribution using Fricke xylenol gel dosimetry. Nucl Instrum Method B 269:3137–3140

    Article  CAS  Google Scholar 

  8. Abtahi SM, Zahmatkesh MH, Khalafi H (2016) Investigation of an improved MAA-based polymer gel for thermal neutron dosimetry. J Radioanal Nucl Chem 307(2):855–868

    Article  CAS  Google Scholar 

  9. Kargar Shaker Langaroodi R, Abtahi SMM, Akbari ME (2019) Investigation of the radiological properties of various phantoms for their application in low energy X-rays dosimetry. Radiat Phys Chem 157:33–39

    Article  CAS  Google Scholar 

  10. Sato R, Almeida AD, Moreira MV (2009) 137Cs source dose distribution using the Fricke Xylenol Gel dosimetry. Nucl Instrum Method B 267:842–845

    Article  CAS  Google Scholar 

  11. De Deene Y, De Wagter C, Van Duyse B, Derycke S, De Neve W, Achten E (1998) Three-dimensional dosimetry using polymer gel and magnetic resonance imaging applied to the verification of conformal radiation therapy in head-and-neck cancer. Radiother Oncol 48:283–291

    Article  PubMed  Google Scholar 

  12. Abtahi SM, Aghamiri SMR, Khalafi H (2014) Optical and MRI investigations of an optimized acrylamide-based polymer gel dosimeter. J Radioanal Nucl Chem 300:287–301

    Article  CAS  Google Scholar 

  13. Kim S-Y, Baek H-M, Lee J-H, Kim D-H, Jung J-Y, Lee D-W, Min J-W, Park J-Y, Lee S-R, Choe B-Y (2014) Reduced dose uncertainty in MRI-based polymer gel dosimetry using parallel RF transmission with multiple RF sources. J Radioanal Nucl Chem 302(1):533–541

    Article  CAS  Google Scholar 

  14. Hilts M, Audet C, Duzenli C, Jirasek A (2000) Polymer gel dosimetry using x-ray computed tomography: a feasibility study. Phys Med Biol 45:2559–2571

    Article  CAS  PubMed  Google Scholar 

  15. Mather ML, Whittaker AK, Baldock C (2002) Ultrasound evaluation of polymer gel dosimeters. Phys Med Biol 47:1449–1458

    Article  PubMed  Google Scholar 

  16. Baldock C, Rintoul L, Keevil SF, Pope JM, George GA (1998) Fourier transform Raman spectroscopy of polyacrylamide gels(PAGs) for radiation dosimetry. Phys Med Biol 43:3617–3627

    Article  CAS  PubMed  Google Scholar 

  17. De Deene Y, Venning A, Hurley C, Healy BJ, Baldock C (2002) Dose-response stability and integrity of the dose distribution of various polymer gel dosimeters. Phys Med Biol 47(14):2459–2470

    Article  PubMed  Google Scholar 

  18. Fong PM, Keil DC, Does MD, Gore JC (2001) Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys Med Biol 46(12):3105–3113

    Article  CAS  PubMed  Google Scholar 

  19. Deene YD, Vergote K, Claeys C, De Wagter C (2006) The fundamental radiation propertiesof normoxic polymer gel dosimeters: a comparison between a methacrylic acid based gel and acrylamide based gels. Phys Med Biol 51:653–673

    Article  CAS  PubMed  Google Scholar 

  20. Sellakumar P, Samuel EJJ (2010) Study on energy dependence of PAGAT polymer gel dosimeter evaluated using X-ray CT. Radiat Meas 45:92–97

    Article  CAS  Google Scholar 

  21. Venning AJ, Hill B, Brindha S, Healy BJ, Baldock C (2005) Investigation of the PAGAT polymer gel dosimeter using magnetic resonance imaging. Phys Med Biol 50:3875–3888

    Article  CAS  PubMed  Google Scholar 

  22. Senden RJ, Jean PD, McAuley KB, Schreiner LJ (2006) Polymer gel dosimeters with reduced toxicity: a preliminary investigation of the NMR and optical dose–response using different monomers. Phys Med Biol 51:3301–3314

    Article  CAS  PubMed  Google Scholar 

  23. Deene YD, Pittomvils G, Visalatchi S (2007) The influence of cooling rate on the accuracy of normoxic polymer gel dosimeters. Phys Med Biol 52(10):2719–2728

    Article  CAS  PubMed  Google Scholar 

  24. International Atomic Energy Agency (IAEA) (2000) Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. Technical report series no. 398 (Vienna: IAEA)

  25. Deene YD, Wagter CD (2001) Artefacts in multi-echo T2 imaging for high-precision gel dosimetry: III. Effects of temperature drift during scanning. Phys Med Biol 46:2697–2711

    Article  PubMed  Google Scholar 

  26. De Deene Y, Van de Walle R, Achten E, De Wagter C (1998) Mathematical analysis and experimental investigation of noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry. Signal Process 70:85–101

    Article  Google Scholar 

  27. Baldock C, Lepage M, Back SA, Murry PJ, Jayasekera PM, Porter D, Kron T (2001) Dose resolution in radiotherapy gel dosimetry: effect of echo spacing in MRI pulse sequence. Phys Med Biol 46:449–460

    Article  Google Scholar 

  28. Baldock C, Deene YD, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ (2010) Polymer gel dosimetry. Phys Med Biol 55:R1–R63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deene YD (2004) Essential characteristics of polymer gel dosimeters. J Phys Conf Ser 3:34–57

    Article  CAS  Google Scholar 

  30. Deene YD, Hanselaer P, Wagter CD, Achten E, Neve WD (2000) An investigation of the chemical stability of a monomer/polymer gel dosimeter. Phys Med Biol 45:859–878

    Article  PubMed  Google Scholar 

  31. Vergote K, Deene YD, Bussche EV, Wagter CD (2004) On the relation between the spatial dose integrity and the temporal instability of polymer gel dosimeters. Phys Med Biol 49:4507–4522

    Article  CAS  PubMed  Google Scholar 

  32. Chang YJ, Chen CH, Hsieh BT (2014) Characterization of long-term dose stability of N-isopropylacrylamide polymer gel dosimetry. J Radioanal Nucl Chem 301(3):765–780

    Article  CAS  Google Scholar 

  33. Schreiner LJ (2006) Dosimetry in modern radiation therapy: limitations and needs. In: Preliminary proceeding of DOSGEL 2006—4th international conference on radiotherapy gel dosimetry. University of Sherbrooke, Sherbrooke (Quebec), Canada

  34. Ibbott GS (2006) Clinical applications of gel dosimeteres. In: Preliminary proceeding of DOSGEL 2006—4th international conference on radiotherapy gel dosimetry. University of Sherbrook, Sherbrook (Quebec), Canada

  35. Ertl A, Berg A, Zehetmayer M, Frigo P (2000) High-resolution dose profile studies based on MR Imaging with polymer BANGTM gels in stereotactic radiation techniques. Magn Reson Imaging 18:343–349

    Article  CAS  PubMed  Google Scholar 

  36. Chang Y-J, Hsieh B-T, Liang J-A (2011) A systematic approach to determine optimal composition of gel used in radiation therapy. Nucl Instrum Method A 652:783–785

    Article  CAS  Google Scholar 

  37. Lepage M, Whittaker AK, Rintoul L, Back SA, Baldock C (2001) The relationship between radiation-induced chemical processes and transverse relaxation times in polymer gel dosimeters. Phys Med Biol 46:1061–1074

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported as a research project under Grant Number IKIU-10372 by Imam Khomeini International University, Qazvin, Iran. The author acknowledge the radiology and radiotherapy departments of Shohadae-Tajrish hospital, specially Mr. Masud Heidari and Mr. Ali Jabbari, for their kind efforts in gel dosimeters imaging and irradiation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Mahdi Abtahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abtahi, S.M.M. Response overshoot: a challenge for the application of polymer gel dosimeters. J Radioanal Nucl Chem 321, 885–893 (2019). https://doi.org/10.1007/s10967-019-06658-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06658-8

Keywords

Navigation