Skip to main content
Log in

TL dating and XRF clay provenance analysis of ancient brick at Cuicul Roman city, Algeria

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, a terra-cotta brick collected from the famous archaeological Roman city Cuicul, Algeria, was successfully dated by thermoluminescence. The provenance of the fabrication material was also identified by X-ray fluorescence analysis (XRF). The results obtained show that the brick was probably made in 198 A.D. This date is in good agreement with the history of the dated site and the neighborhood Caracalla arch edified in honour to Caracalla emperor (211–217 A.D.). The XRF study demonstrates that the raw clay used for the fabrication of the brick is local and well selected by the Roman builders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. https://whc.unesco.org/fr/list/191. Accessed 19 March 2018

  2. UNESCO (2000) Roman Art in Africa, World Heritage N°16

  3. Akli Ikherbane M (2003) Le site archéologique de Djemila, l’antique Cuicul: Éventail d’actions possibles. Les Dossiers d’archéologie (Dijon) A286:26–31

    Google Scholar 

  4. Allais Y (1953) Le quartier à l’Est du Forum des Sévères. Revue Africaine XCVII:48–65

    Google Scholar 

  5. Allais Y (1971) Le quartier Occidental de Djemila (Cuicul). Antiquités Africaines 5:95–119

    Article  Google Scholar 

  6. Aitken MJ (1970) Dating by archaeomagnetic and thermoluminescent methods. Philos Trans R Soc Lond Ser A 269(1193):77–88

    Article  CAS  Google Scholar 

  7. Zimmerman DW, Huxtable J (1969) Recent applications and developments in thermoluminescent dating. Archaeometry 11:105–108

    Article  CAS  Google Scholar 

  8. Veronese I, Goksu HY, Schwenk P, Herzig F (2008) Thermoluminescence dating of a mikveh in Ichenhausen, Germany. J Environ Radioact 99:621–630

    Article  CAS  PubMed  Google Scholar 

  9. Kondopoulou D, Aidona E, Ioannidis N, Polymeris GS, Tsolakis S (2015) Archaeomagnetic study and thermoluminescence dating of Protobyzantine kilns (Megali Kypsa, North Greece). J Archaeol Sci Rep 2:156–168

    Google Scholar 

  10. Yeea KP, Mob RH (2018) Thermoluminescence dating of stalactitic calcite from the early Palaeolithic occupation at Tongamdong site. J Archaeol Sci Rep 19:405–410

    Google Scholar 

  11. Sears DWG, Sears H, Sehlke A, Hughes SS (2018) Induced thermoluminescence as a method for dating recent volcanism: Hawaii County, Hawaii, USA. J Volcanol Geoth Res 349:74–82

    Article  CAS  Google Scholar 

  12. Sabtu SN (2015) Thermoluminescence dating analysis at the site of an ancient brick structure at Pengkalan Bujang, Malaysia. Appl Radiat Isot 105:182–187

    Article  CAS  PubMed  Google Scholar 

  13. Temaa E, Polymerisc G, Moralesd J, Goguitchaichvilid A, Tsaknakie V (2015) Dating of ancient kilns: a combined archaeomagnetic and thermoluminescence analysis applied to a brick workshop at Kato Achaia, Greece. J Cult Herit 16:496–507

    Article  Google Scholar 

  14. Sanzelle S, Miallier D, Pilleyre T, Faïn J, Montret M (1996) A new slide technique for regressing TL/ESR dose response curves. Radiat Meas 26:631–638

    Article  CAS  Google Scholar 

  15. Aitken MJ (1974) Physics and archaeology. Clarendon Press, Oxford, pp 26–84

    Google Scholar 

  16. Zimmerman DW (1971) Thermoluminescent dating using fine grains from pottery. Archaeometry 13:29–52

    Article  CAS  Google Scholar 

  17. Jain M, Booetten-Jensen L, Singhvi AK (2003) Dose evaluation using multiple aliquot quartz OSL: test of methods and new protocol for improved accuracy and precision. Radiat Meas 37:67–80

    Article  CAS  Google Scholar 

  18. Richter D (2007) Advantages and limitations of thermoluminescence dating of heated flint from paleolithic sites. Geoarchaeology 22(6):671–683

    Article  Google Scholar 

  19. Felix C, Singhvi AK (1997) Study of non-linear luminescence-dose growth curves for the estimation of paleodose in luminescence dating: results of Monte Carlo simulations. Radiat Meas 27:599

    Article  CAS  Google Scholar 

  20. Fleming SJ (1970) Thermoluminescent dating: refinement of quartz inclusion method. Archaeometry 12(2):133–146

    Article  CAS  Google Scholar 

  21. Kharfi F, Ketfi R (2018) Irradiated black pepper identification based on thermoluminescence of silicate minerals. J Radioanal Nucl Chem 315:503–507

    Article  CAS  Google Scholar 

  22. Aitken MJ (1985) Thermoluminescence dating. Academic Press, London

    Google Scholar 

  23. Mejdahl V (1979) Thermoluminescence dating: beta dose attenuation in quartz grains. Archaeometry 21:61–72

    Article  CAS  Google Scholar 

  24. Mejdahl V (1987) Internal radioactivity in quartz and feldspar grains. Ancient TL 5(2):10–17

    Google Scholar 

  25. Pilleyre T(1991) Datation par thermoluminescence: application à la chronologie des retombées volcaniques. Thèse de doctorat de l’université Blaise Pascal—Clermont II, Clermont-Ferrand, France

  26.  Bassinet C (2007) Datation par luminescence : recherches méthodologiques et applications au volcanisme dans l’environnement de Laschamp. Thèse de doctorat de l’université Blaise Pascal- Clermont-Ferrand II, Françe

  27. Prescott JR, Hutton JT (1994) Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiat Meas 23:497–500

    Article  CAS  Google Scholar 

  28. Pilleyre T, Montret M, Fain J, Miallier D, Sanzelle S (1992) Attempts at dating ancient volcanoes using the red TL of quartz. Quat Sci Rev 11:13–17

    Article  Google Scholar 

  29. Leydier-Bareil AM (2006) Les arcs de triomphe dédiés à Caracalla en Afrique romaine. Doctorat histoire de l’art et archéologie, Université de Nancy 2, France. LN006/26-2 bis

  30. Lourenço PB, Fernandes FM, Castro F (2010) Handmade clay bricks: chemical, physical and mechanical properties. Int J Archit Herit. https://doi.org/10.1080/15583050902871092

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayçal Kharfi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharfi, F., Boudraa, L., Benabdelghani, I. et al. TL dating and XRF clay provenance analysis of ancient brick at Cuicul Roman city, Algeria. J Radioanal Nucl Chem 320, 395–403 (2019). https://doi.org/10.1007/s10967-019-06491-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06491-z

Keywords

Navigation