Skip to main content
Log in

Irradiation and isolation of fission products from uranium metal–organic frameworks

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Typical fission product formation experiments utilize metal or oxide target materials that must be dissolved prior to product separation. We report here a novel study using metal–organic frameworks for recovery of fission products into acidic media. We further show that the frameworks are largely preserved, such that this bulk target material could be retained for additional irradiations or characterizations. Through this approach, fission products can be separated from the actinide-based metal–organic framework using 0.01 M HNO3 without the need to dissolve the framework itself, reducing the amount of acidic waste. Extraction yields of four frameworks with varying pore sizes are compared. The results suggest that it may be possible to use porous frameworks as target materials for the extraction of select fission products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdelrasoul A, Zhang H, Cheng CH, Doan H (2017) Microporous Mesoporous Mater 242:294

    Article  CAS  Google Scholar 

  2. Custelcean R, Moyer BA (2007) Eur J Inorg Chem 2007(10):1313–1317

    Article  Google Scholar 

  3. Kulprathipanja S (2010) Zeolites in industrial separation and catalysis. Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim

    Book  Google Scholar 

  4. Pina MP, Arruebo M, Mallada R (2015) Handbook of membrane separations. CRC Press, Boca Raton

    Google Scholar 

  5. Yu J, Xie LH, Li JR, Ma Y, Seminario JM (2017) CO2 capture and separations using MOFs: computational and experimental studies. Chem Rev 117(14):9674–9754

    Article  CAS  PubMed  Google Scholar 

  6. Li X, Liu Y, Wang J, Gascon J, Li J, Van der Bruggen B (2017) Metal–organic frameworks based membranes for liquid separation. Chem Soc Rev 46(23):7124–7144. https://doi.org/10.1039/C7CS00575J

    Article  CAS  PubMed  Google Scholar 

  7. Peng Y, Huang H, Zhang Y, Kang C, Chen S, Song L, Liu D, Zhong C (2018) A versatile MOF-based trap for heavy metal ion capture and dispersion. Nat Commun 9(1):187. https://doi.org/10.1038/s41467-017-02600-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Farrusseng D (ed) (2011) Metal organic frameworks: applications from catalysis to gas storage. Wiley-VCH, Weinheim

    Google Scholar 

  9. Cahill CL, Borkowski LA (2007) U(VI)-containing metal organic frameworks and coordination polymers. In: Krivovichev S, Burns P, Tananaev I (eds) Structural chemistry of inorganic actinide compounds, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  10. Cantos PM, Frisch M, Cahill CL (2010) Synthesis, structure and fluorescence properties of a uranyl-2,5-pyridinedicarboxylic acid coordination polymer: the missing member of the UO22+-2, n-pyridinedicarboxylic series. Inorg Chem Commun 13(9):1036–1039. https://doi.org/10.1016/j.inoche.2010.06.004

    Article  CAS  Google Scholar 

  11. Frisch M, Cahill CL (2006) Synthesis, structure and fluorescent studies of novel uranium coordination polymers in the pyridinedicarboxylic acid system. Dalton Trans 39:4679–4690. https://doi.org/10.1039/B608187H

    Article  Google Scholar 

  12. Kerr AT, Cahill CL (2011) Crystal engineering with the uranyl cation III. Mixed aliphatic dicarboxylate/aromatic dipyridyl coordination polymers: synthesis, structures, and speciation. Cryst Growth Des 11(12):5634–5641. https://doi.org/10.1021/cg2011869

    Article  CAS  Google Scholar 

  13. Thuéry P (2009) Uranyl–organic bilayer assemblies with flexible aromatic di-, tri- and tetracarboxylic acids†. CrystEngComm 11:1081–1088. https://doi.org/10.1039/b821895a

    Article  CAS  Google Scholar 

  14. Thuéry P (2009) Two novel uranyl-organic frameworks with cyclohexane-1,3-dicarboxylate ligands. CrystEngComm 11:1081–1088

    Article  CAS  Google Scholar 

  15. Thuéry P (2011) Uranyl–organic assemblies with acetate-bearing phenyl- and cyclohexyl-based ligands. Cryst Growth Des 11(1):347–355. https://doi.org/10.1021/cg101344t

    Article  CAS  Google Scholar 

  16. Thuéry P (2011) Uranyl ion complexation by aliphatic dicarboxylic acids in the presence of cucurbiturils as additional ligands or structure-directing agents. Cryst Growth Des 11(6):2606–2620. https://doi.org/10.1021/cg200349p

    Article  CAS  Google Scholar 

  17. Thuéry P (2012) Uranyl ion complexes with ammoniobenzoates as assemblers for cucurbit [6] uril molecules. Cryst Growth Des 12:499–507

    Article  CAS  Google Scholar 

  18. Thuéry P (2012) Uranyl-organic one- and two- dimensional assemblies with 2,2′-bipyridine-3,3′-dicarboxylic, biphenyl-3,3′,4,4′-tetracarboxylic and bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic acids. CrystEngComm 14:131–137

    Article  Google Scholar 

  19. Dolgopolova EA, Ejegbavwo OA, Martin CR, Smith MD, Setyawan W, Karakalos SG, Henager CH, zur Loye H-C, Shustova NB (2017) Multifaceted modularity: a key for stepwise building of hierarchical complexity in actinide metal–organic frameworks. J Am Chem Soc 139(46):16852–16861. https://doi.org/10.1021/jacs.7b09496

    Article  CAS  PubMed  Google Scholar 

  20. MacGillivray LR (2010) Metal organic frameworks: design and application. Wiley, Hoboken

    Book  Google Scholar 

  21. Sheldrick G (2008) A short history of SHELX. Acta Crystallogr Sect A 64(1):112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  22. Hutcheon ID, Grant PM, Moody KJ (2011) Handbook of nuclear chemistry. Springer, Boston

    Google Scholar 

  23. Dorhout JM, Wilkerson MP, Czerwinski KR (2018) A UO2-based salt target for rapid separation of fission products. J Radioanal Nucl Chem 319(3):1291–1300

    Article  CAS  Google Scholar 

  24. Volkringer C, Falaise C, Devaux P, Giovine R, Stevenson V, Pourpoint F, Lafon O, Osmond M, Jeanjacques C, Marcillaud B, Sabroux JC, Loiseau T (2016) Stability of metal–organic frameworks under gamma irradiation. Chem Commun 52(84):12502–12505. https://doi.org/10.1039/C6CC06878B

    Article  CAS  Google Scholar 

  25. Doty FP, Bauer CA, Grant PG, Simmons BA, Skulan AJ, Allendorf MD (2007) Radioluminescence and radiation effects in metal organic framework materials. In: Optical Engineering + Applications, 2007. SPIE, p 8

  26. Mihalcea I, Henry N, Volkringer C, Loiseau T (2011) Uranyl–pyromellitate coordination polymers: toward three-dimensional open frameworks with large channel systems. Cryst Growth Des 12:526–535

    Article  CAS  Google Scholar 

  27. Sheldrick GM (2001) SADABS 2.03. University of Gottingen, Gottingen

    Google Scholar 

  28. Sheldrick GM (2008) Acta Crystallogr Sect A: Found Crystallogr 64:112–122

    Article  CAS  Google Scholar 

  29. Gibson MA, Briggs MH, Sanzi JL, Brace MH (2013) Heat pipe powered stirling conversion for the demonstration using flattop fission (DUFF) test. In: Presentation given at the topical meeting: Nuclear and emerging technologies for space (NETS-2013) cosponsored by the American Nuclear Soceity and Aerojet, Albuquerque, NM, February 25–28 2013

  30. Hayes DK, Myers WL (2012) NCERC capabilities and status July 2012. In: Institute of nuclear materials management 53rd annual meeting, Orlando, Florida, 2012

  31. Loaiza D, Gehman D (2006) End of an Era for the Los Alamos critical experiments facility: history of critical assemblies and experiments (1946–2004). Ann Nucl Energy 33(17):1339–1359. https://doi.org/10.1016/j.anucene.2006.09.009

    Article  CAS  Google Scholar 

  32. Malenfant RE (1981) Los Alamos critical assemblies facilities. Los Alamos Scientific Laboratory, Los Alamos

    Book  Google Scholar 

  33. Immirzi A, Bombieri G, Degetto S, Marangoni G (1975) The crystal and molecular structure of pyridine-2,6-dicarboxylatodioxouranium(VI) monohydrate. Acta Crystallogr Sect B 31(4):1023–1028. https://doi.org/10.1107/S0567740875004426

    Article  Google Scholar 

  34. Cantos PM, Frisch M, Cahill CL (2010) Inorg Chem Commun 13:1036

    Article  CAS  Google Scholar 

  35. Kerr AT, Cahill CL (2011) Crystal Engineering with the uranyl cation III. Mixed aliphatic dicarboxylate/aromatic dipyridyl coordination polymers: synthesis, structures, and speciation. Crystal Growth Des 11(12):5634–5641. https://doi.org/10.1021/cg2011869

    Article  CAS  Google Scholar 

  36. Mihalcea I, Henry N, Volkringer C, Loiseau T (2012) Uranyl–pyromellitate coordination polymers: toward three-dimensional open frameworks with large channel systems. Cryst Growth Des 12(1):526–535. https://doi.org/10.1021/cg201509v

    Article  CAS  Google Scholar 

  37. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal–organic frameworks. Science 341:6149. https://doi.org/10.1126/science.1230444

    Article  CAS  Google Scholar 

  38. Barbalace K (1995) Periodic table of elements—sorted by ionic radius. https://EnvironmentalChemistry.com/yogi/periodic/ionicradius.html. Accessed 13 Nov 2018

  39. Baum EM, Ernesti MC, Knox HD, Miller TR, Watson AM, Travis SD (2009) Nuclides and isotopes: chart of the nuclides. Bechtel Marine Propulsion Corporation, Richmond

    Google Scholar 

  40. Shahroosvand H, Nasouti F, Mohajerani E, Khabbazi A (2012) Synthesis, characterization and optical properties of novel N donor ligands-chelated zirconium(IV) complexes. Opt Mater 35(1):79–84. https://doi.org/10.1016/j.optmat.2012.07.006

    Article  CAS  Google Scholar 

  41. Smirnova OV, Sukhova TA, Solov’ev MV, Galibeev SS, Gagieva SC, Tuskaev VA, Bulychev BM (2011) Titanium(4+) and zirconium(4+) dichloride complexes with pyridinedicarboxylic acid derivatives as ethylene polymerization catalysts. Russian J Inorg Chem 56(4):555–557. https://doi.org/10.1134/s0036023611040255

    Article  CAS  Google Scholar 

  42. Xu T, Wu B, LGe L, Wang X, Xu T (2018) Double organic ligand MOF and its preparation method, double organic ligand charged MOF and its preparation method. People’s Republic of China Patent

  43. Rzączyńska Z, Danczowska-Burdon A, Sienkiewicz-Gromiuk J (2010) Thermal and spectroscopic properties of light lanthanides(III) and sodium complexes of 2,5-pyridinedicarboxylic acid. J Therm Anal Calorim 101(2):671–677. https://doi.org/10.1007/s10973-010-0941-3

    Article  CAS  Google Scholar 

  44. Zhang Y-H, Di Y-Y, Tan Z-C, Dou J-M (2014) Synthesis, crystal structure and thermochemistry of the coordination compound of pyridine-2,6-dicarboxylic acid with barium ion. Thermochim Acta 575:173–178. https://doi.org/10.1016/j.tca.2013.10.034

    Article  CAS  Google Scholar 

  45. Ye J, League A, Truhlar D, Cramer C, Gagliardi L, Bernales V, Farha O, Hupp J, Li Z, Platero Prats AE, Chapman K, Camaioni D, Fulton J, Lercher J (2017) Computational study of a MOF-supported single site Ni catalyst for ethylene dimerization. Paper presented at the 254th ACS national meeting & exposition, Washington, DC, August 20–24, 2017

  46. Shalini S, Nandi S, Justin A, Maity R, Vaidhyanathan R (2018) Potential of ultramicroporous metal–organic frameworks in CO2 clean-up. Chem Commun. https://doi.org/10.1039/c8cc03233e

    Article  Google Scholar 

  47. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) Science 341(6149):1230444

    Article  CAS  PubMed  Google Scholar 

  48. Dorhout JM (2017) Synthesis of actinide materials for the study of basic actinide science and rapid separation of fission products. University of Nevada - Las Vegas, Las Vegas

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Dr. D. Mast (UNLV) for single crystal analysis, Dr. T. Bredeweg (LANL) for provision of the sample holders, as well as help with the irradiations, and J. Bertoia (UNLV), T. Low (UNLV), R. Springs (UNLV), and Dr. D. Lowe (Varex) for their help with gamma-ray spectroscopy. This research was completed as part of the dissertation work for JMD [48]. For financial support of this work, we acknowledge the LANL G. T. Seaborg Institute for Transactinium Science (graduate funding to JMD), and the Domestic Nuclear Detection Office under competitively awarded contract IAA: HSHQDC-16-X-00088 (post-doctoral funding to JMD). This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Number, 2012-DN-130-NF0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. We also acknowledge the Development of a Synthetic Debris for Nuclear Forensics, Prime Contract No. DE-AC52-06NA25946, Subcontract No. 104777 Task Order 41. Los Alamos National Laboratory is operated by Triad National Security, LLC. for the National Nuclear Security Administration for the U.S. Department of Energy (Contract DE-SOL-0011206). LA-UR-18-30985.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacquelyn M. Dorhout.

Ethics declarations

Conflict of interest

The authors declare that they have competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorhout, J.M., Wilkerson, M.P. & Czerwinski, K.R. Irradiation and isolation of fission products from uranium metal–organic frameworks. J Radioanal Nucl Chem 320, 415–424 (2019). https://doi.org/10.1007/s10967-019-06478-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06478-w

Keywords

Navigation