Skip to main content
Log in

Development of a simple spectrophotometric method to estimate uranium concentration in LiCl–KCl matrix

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A fast, precise and simple spectrophotometric method was developed for the estimation of uranium in LiCl–KCl salt matrix using phosphoric acid as a complexing agent. The 421 nm absorbance peak of uranium was found to be spectral interference free and area of this peak was used for the quantitative analysis. Linearity over 100–7000 ppm with a detection limit of 25 ppm of uranium in 10% LiCl–KCl matrix was obtained by this method. The present method was successfully applied for the quantitative estimation of uranium in synthetic salt mixtures and the results were found to be more accurate than the values measured by ICP-OES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kamath HS (2011) Recycle fuel fabrication for closed fuel cycle in India. Energy Procedia 7:110–119

    Article  Google Scholar 

  2. Li SX, Johnson TA, Westphal BR, Goff KM., Bebedict RW (2005) Electrorefining experience for pyrochemical processing of spent EBR-II driver fuel. In: Proceedings of GLOBAL, p 487

  3. Choi EY, Jeong SM (2015) Electrochemical processing of spent nuclear fuels: an overview of oxide reduction in pyroprocessing technology. Progr Nat Sci Mater Int 25:572–582

    Article  CAS  Google Scholar 

  4. Koyama T, Sakamura Y, Iizuka M, Kato T, Murakami T, Glatz J-P (2012) Development of pyro-processing fuel cycle technology for closing actinide cycle. Procedia Chem 7:772–778

    Article  CAS  Google Scholar 

  5. Nagarajan K, Reddy BP, Ghosh S, Ravisankar G, Mohandas KS, Mudali UK, Kutty KVG, Viswanathan KVK, Babu CA, Kalyanasundaram P, Rao PRV, Raj B (2011) Development of pyrochemical reprocessing for spent metal fuels. Energy Procedia 7:431–436

    Article  CAS  Google Scholar 

  6. Hundry D, Bardez I, Rakhmatullin A, Bessada C, Bart F, Jobic S, Deniard P (2008) Synthesis of rare earth phosphates in molten LiCl–KCl eutectic: application to preliminary treatment of chlorinated waste streams containing fission products. J Nucl Mater 381:284–289

    Article  CAS  Google Scholar 

  7. Cho YZ, Lee TK, Eun HC, Choi JH, Kim IT, Park GI (2013) Purification of used eutectic (LiCl–KCl) salt electrolyte from pyroprocessing. J Nucl Mater 437:47–54

    Article  CAS  Google Scholar 

  8. Eun HC, Kim JH, Cho YZ, Choi JH, Lee TK, Park HS, Park GI (2013) An optimal method for phosphorylation of rare earth chlorides in LiCl–KCl eutectic based waste salt. J Nucl Mater 442:175–178

    Article  CAS  Google Scholar 

  9. Amamoto I, Kofuji H, Myochin M, Takasaki Y, Terai T (2010) Precipitation behavior of fission products by phosphate conversion in LiCl–KCl medium. Nucl Technol 171:316–324

    Article  CAS  Google Scholar 

  10. Perumal SV, Reddy BP, Ravisankar G, Nagarajan K (2015) Actinides drawdown process for pyrochemical reprocessing of spent metal fuel. Radiochim Acta 103:287–292

    Google Scholar 

  11. Sengupta A, Adya VC, Godbole SV (2013) Spectral interference study of uranium on other analytes by using CCD based ICP-AES. J Radioanal Nucl Chem 298:1117–1125

    Article  CAS  Google Scholar 

  12. Rozmaric M, Ivsic AG, Grahek Z (2009) Determination of uranium and thorium in complex samples using chromatographic separation, ICP-MS and spectrophotometric detection. Talanta 80:352–362

    Article  CAS  PubMed  Google Scholar 

  13. Park JH, Choi EJ (2016) Simultaneous determination of the quantity and isotopic ratios of uranium in individual micro-particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS). Talanta 160:600–606

    Article  CAS  PubMed  Google Scholar 

  14. Ganeev A, Bogdanova O, Ivanov I, Burakov B, Agafonova N, Korotetski B, Gubal A, Solovyev N, Iakovleva E, Sillanp M (2015) Direct determination of uranium and thorium in minerals by time-of-flight mass spectrometry with pulsed glow discharge. RSC Adv 5:80901–80910

    Article  CAS  Google Scholar 

  15. Shinotsuka K, Ebihara M (1997) Precise determination of rare earth elements, thorium and uranium in chondritic meteorites by inductively coupled plasma mass spectrometry—a comparative study with radiochemical neutron activation analysis. Anal Chim Acta 338:237–246

    Article  CAS  Google Scholar 

  16. Dimovasilis PA, Prodromidis MI (2011) An electrochemical sensor for trace uranium determination based on 6-O-palmitoyl-l-ascorbic acid-modified graphite electrodes. Sensors Actuat B 156:689–694

    Article  CAS  Google Scholar 

  17. Sonali PDB, Ajay K, Priyanka JR, Rupali K, Rajesh VK, Rajvir S, Pradeepkumar KS (2016) Comparison of radiometric and non-radiometric methods for uranium determination in groundwater of Punjab, India. J Radioanal Nucl Chem 307:395–405

    Article  CAS  Google Scholar 

  18. Tuovinen H, Vesterbacka D, Pohjolainen E, Read D, Solatie D, Lehto J (2015) A comparison of analytical methods for determining uranium and thorium in ores and mill tailings. J Geochem Explor 148:174–180

    Article  CAS  Google Scholar 

  19. Benedik L, Vasile M, Spasova Y, Watjen U (2009) Sequential determination of 210Po and uranium radioisotopes in drinking water by alpha-particle spectrometry. Appl Radiat Isot 67:770–775

    Article  CAS  PubMed  Google Scholar 

  20. Saidou Bochud F, Laedermann JP, Njock MGK, Froidevaux P (2008) A comparison of alpha and gamma spectrometry for environmental natural radioactivity surveys. Appl Radiat Isot 66:215–222

    Article  CAS  PubMed  Google Scholar 

  21. Maji S, Kumar S, Sankaran K (2014) Fluorimetric estimation of U(VI) in the presence of a large excess of Th(IV). J Radio Nucl Chem 302:1277–1281

    Article  CAS  Google Scholar 

  22. Maji S, Kumar S, Sankaran K (2017) Luminescence of uranium ion complexed with 2,6-pyridine dicarboxylic acid as ligand in acetonitrile medium: observation of co-luminescence. Radiochim Acta 105:601–608

    Article  CAS  Google Scholar 

  23. Tarafder PK, Ghosh PK, Pradhan SK (2017) A novel approach for trace to percentage level determination of uranium in rocks, soils and stream sediments by laser induced fluorimetry. J Radioanal Nucl Chem 313:353–360

    Article  CAS  Google Scholar 

  24. Kumar SA, Shenoy NS, Pandey S, Sounderajan S, Venkateswaran G (2008) Direct determination of uranium in seawater by laser fluorimetry. Talanta 77:422–426

    Article  CAS  PubMed  Google Scholar 

  25. Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63:1165–1169

    Article  CAS  PubMed  Google Scholar 

  26. Bagda E, Tuzen M (2016) Determination of uranium in water samples with chromogenic reagent 4-(2-thiazolylazo) resorcinol after ionic liquid based dispersive liquid liquid microextraction. J Radioanal Nucl Chem 309:453–459

    CAS  Google Scholar 

  27. Niazi A, Khorshidi N, Ghaemmaghami P (2015) Microwave-assisted of dispersive liquid–liquid microextraction and spectrophotometric determination of uranium after optimization based on Box–Behnken design and chemometrics methods. Spectrochim Acta Part A Mol Biomol Spectrosc 135:69–75

    Article  CAS  Google Scholar 

  28. Souza AS, Siqueira RP, Prates RF, Bezerra VM, Rocha DDS, Oliveira MV, Santos DB (2017) A dispersive liquid–liquid microextraction based on solidification of floating organic drop and spectrophotometric determination of uranium in breast milk after optimization using Box–Behnken design. Microchem J 134:327–332

    Article  CAS  Google Scholar 

  29. Schroll CA, Lines AM, Heineman WR, Bryan SA (2016) Absorption spectroscopy for the quantitative prediction of lanthanide concentrations in the 3LiCl–2CsCl eutectic at 723 K. Anal Methods 8:7731–7738

    Article  CAS  Google Scholar 

  30. Servaes K, Hennig C, Billard I, Gaillard C, Binnemans K, Görller WC, Deun RV (2008) Speciation of uranium nitrato complexes in acetonitrile and in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Eur J Inorg Chem 2007:5120–5126

    Article  CAS  Google Scholar 

  31. Bell JT, Biggers RE (1965) The absorption spectrum of the uranium ion in perchlorate media. J Mol Spectrosc 18:247–275

    Article  CAS  Google Scholar 

  32. Nockemann P, Deun RV, Thijs B, Huys D, Vanecht E, Hecke KV, Meervelt LV, Binnemans K (2010) Uranium complexes of carboxyl-functionalized ionic liquids. Inorg Chem 49:3351–3360

    Article  CAS  PubMed  Google Scholar 

  33. Runde W, Neu MP, Conradson SD, Clark DL, Palmer PD, Reilly SD, Scott BL, Tait CD (1997) Spectroscopic investigation of actinide speciation in concentrated chloride solution. Mater Res Soc Symp Proc 455:693–703

    Google Scholar 

  34. Houwer SD, Gorller WC (2001) Influence of complex formation on the electronic structure of uranium. J Alloys Compd 323–324:683–687

    Article  Google Scholar 

  35. Smith NA, Czerwinski KR (2013) Speciation of the uranium nitrate system via spectrophotometric titrations. J Radioanal Nucl Chem 298:1777–1783

    Article  CAS  Google Scholar 

  36. Rao L, Tian G (2008) Thermodynamic study of the complexation of uranium(VI) with nitrate at variable temperatures. J Chem Thermodyn 40:1001–1006

    Article  CAS  Google Scholar 

  37. Colletti LM, Copping R, Garduno K, Lujan EJW, Mauser AK, Mechler HA, May I, Reilly SD, Rios D, Rowley J, Schroeder AB (2017) The application of visible absorption spectroscopy to the analysis of uranium in aqueous solutions. Talanta 175:390–405

    Article  CAS  PubMed  Google Scholar 

  38. Beltrami D, Mercier-Bion F, Cote G, Mokhtari H, Bruno C, Simoni E, Chagnes A (2014) Investigation of the speciation of uranium(VI) in concentrated phosphoric acid and in synergistic extraction systems by time-resolved laser induced fluorescence spectroscopy (TRLFS). J Mol Liq 190:42–49

    Article  CAS  Google Scholar 

  39. Cao J, Ren Y, Liu J (2018) Solid–liquid phase equilibria of the KH2PO4–KCl–H3PO4–H2O and KH2PO4–KCl–C2H5OH–H2O systems at T = (298.15 and 313.15) K. J Chem Eng Data 63(6):2065–2074

    Article  CAS  Google Scholar 

  40. Priebe S, Bateman K (2008) The ceramic waste form process at Idaho National Laboratory. Nucl Technol 162:199–207

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the help of Mrs. S. Annapoorani, Materials Chemistry Division, IGCAR for ICP-OES analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sankaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Maji, S., Sundararajan, K. et al. Development of a simple spectrophotometric method to estimate uranium concentration in LiCl–KCl matrix. J Radioanal Nucl Chem 320, 337–343 (2019). https://doi.org/10.1007/s10967-019-06471-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06471-3

Keywords

Navigation