Skip to main content
Log in

Initial quantum levels of captured muons in CO, CO2, and COS

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The role of valence electrons for the muon capture process by molecules is experimentally investigated with the aid of cascade calculations. Low-momentum muons are introduced to gas targets of CO, CO2, and COS below atmospheric pressure. The initial states of captured muons are determined from the measured muonic X-ray structure of the Lyman and Balmer series. We propose that the lone pair electrons in the carbon atom of CO significantly contribute to the capture of a muon with large angular momenta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sugiyama J, Umegaki I, Nozaki H et al (2018) Nuclear magnetic field in solids detected with negative-muon spin rotation and relaxation. Phys Rev Lett 121:087202. https://doi.org/10.1103/PhysRevLett.121.087202

    Article  CAS  PubMed  Google Scholar 

  2. Nishi T, Itahashi K, Berg GPA et al (2018) Spectroscopy of pionic atoms in 122Sn(d, 3He) reaction and angular dependence of the formation cross sections. Phys Rev Lett 120:152505. https://doi.org/10.1103/PhysRevLett.120.152505

    Article  CAS  PubMed  Google Scholar 

  3. Inagaki M, Ninomiya K, Yoshida G et al (2018) Muon transfer rates from muonic hydrogen atoms to gaseous benzene and cyclohexane. J Nucl Radiochem Sci 18:5–8

    Article  CAS  Google Scholar 

  4. Fermi E, Teller E (1947) The capture of negative mesotrons in matter. Phys Rev 72:399. https://doi.org/10.1103/PhysRev.72.399

    Article  CAS  Google Scholar 

  5. Hughes VW, Wu CS (1977) Muon Physics, vol 1. Academic Press, USA

    Google Scholar 

  6. Kaeser K, Robert-Tissot B, Schller LA et al (1979) Muonic sodium X-ray intensities in different compounds. Helv Phys Acta 52:304–312

    CAS  Google Scholar 

  7. Hartmann FJ, Bergmann R, Daniel H et al (1982) Measurement of the muonic X-ray cascade in Mg, AI, In, Ho, and Au. Z Phys A Atoms Nucl 305:189–204. https://doi.org/10.1007/BF01417434

    Article  CAS  Google Scholar 

  8. Knight JD, Orth CJ, Schillaci ME et al (1983) Target-density effects in muonic-atom cascades. Phys Rev A 27:2936–2945

    Article  CAS  Google Scholar 

  9. Siems T, Anagnostopoulos DF, Borchert G et al (2000) First direct observation of Coulomb explosion during the formation of exotic atoms. Phys Rev Lett 84:4573–4576. https://doi.org/10.1103/PhysRevLett.84.4573

    Article  CAS  PubMed  Google Scholar 

  10. Callies R, Daniel H, Hartmann FJ, Neumann W (1982) Detection of muonic auger electron lines from silver. Phys Lett A 91:441–443

    Article  Google Scholar 

  11. Akylas VR, Vogel P (1978) Muonic atom cascade program. Comput Phys Commun 15:291–302. https://doi.org/10.1016/0010-4655(78)90099-1

    Article  CAS  Google Scholar 

  12. Vogel P (1980) Muonic cascade: general discussion and application to the third-row elements. Phys Rev A 22:1600–1609. https://doi.org/10.1103/PhysRevA.22.1600

    Article  CAS  Google Scholar 

  13. Ponomarev LI (1973) Molecular structure effects on atomic and nuclear capture of mesons. Annu Rev Nucl Sci 23:395–430. https://doi.org/10.1146/annurev.ns.23.120173.002143

    Article  CAS  Google Scholar 

  14. Petrukhin VI, Suvorov VM (1976) Study of atomic capture and transfer of π meson in mixture of hydrogen with other gases. Sov Phys JETP 43:595–598

    Google Scholar 

  15. Schneuwly H, Pokrovsky VI, Ponomarev LI (1978) On coulomb capture ratios of negative mesons in chemical compounds. Nucl Phys Sect A 312:419–426. https://doi.org/10.1016/0375-9474(78)90601-2

    Article  Google Scholar 

  16. Horvath D (1981) Chemistry of pionic hydrogen atoms. Radiochim Acta 28:241–254

    Article  CAS  Google Scholar 

  17. Schneuwly H, Boschung M, Kaeser K et al (1983) Capture of negative muons in cubic and hexagonal structures of carbon and boron nitride. Phys Rev A 27:950–960. https://doi.org/10.1103/PhysRevA.27.950

    Article  CAS  Google Scholar 

  18. Imanishi N, Miyamoto S, Takeuchi Y et al (1988) Chemical-bond effect of pion-capture ratios in some alkali-metal compounds. Phys Rev A 37:43–48

    Article  CAS  Google Scholar 

  19. Schneuwly H (1991) Dependence of muonic X-ray intensity spectra and bond ionicities—example of oxygen and chlorine in compounds of third-row elements. Struct Chem 2:447–450. https://doi.org/10.1007/BF00672238

    Article  CAS  Google Scholar 

  20. Yoshida G, Ninomiya K, Ito TU et al (2015) Muon capture probability of carbon and oxygen for CO, CO2, and COS under low-pressure gas conditions. J Radioanal Nucl Chem 303:1277–1281. https://doi.org/10.1007/s10967-014-3602-3

    Article  CAS  Google Scholar 

  21. Knight JD, Orth CJ, Schillaci ME et al (1980) Coulomb capture ratios of negative muons in N2 + O2, NO and CO. Phys Lett A 79:377–379

    Article  Google Scholar 

  22. Kubo MK, Sakai Y, Tominaga T, Nagamine K (1989) Atomic negative muon capture in oxygen-containing organic compounds. Radiochim Acta 47:77–78

    Article  CAS  Google Scholar 

  23. O’Leary K, Jackson DF (1985) Intensity patterns of pionic X-rays emitted from simple molecules. Z Phys A Atoms Nucl 320:551–556

    Article  Google Scholar 

  24. Kirch K, Hauser P, Kottmann F, Simons LM (1999) Molecular effects in light muonic atoms. Hyperfine Interact 119:83–88

    Article  CAS  Google Scholar 

  25. Kirch K, Abbott D, Bach B et al (1999) Muonic cascades in isolated low-Z atoms and molecules. Phys Rev A 59:3375–3385

    Article  CAS  Google Scholar 

  26. Jacot-Guillarmod R, Bienz F, Boschung M et al (1988) Electronic structure and muonic X-ray intensities in isoelectronic series of neon and argon. Phys Rev A 37:3795–3800

    Article  CAS  Google Scholar 

  27. Ehrhart P, Hartmann FJ, Kohler E, Daniel H (1983) An experimental investigation of the pressure and concentration dependence of muonic Coulomb capture and cascade in gases. Z Phys A Atoms Nucl A 311:259–266

    Article  CAS  Google Scholar 

  28. Bacher R, Bl̈m P, Gotta D et al (1989) Relevance of ionization and electron refilling to the observation of the M1 transition (M1:2s-1s) in light muonic atoms. Phys Rev A 39:1610–1620. https://doi.org/10.1103/PhysRevA.39.1610

    Article  CAS  Google Scholar 

  29. Markushin VE (1994) Atomic cascade in muonic hydrogen and the problem of kinetic-energy distribution in the ground state. Phys Rev A 50:1137–1143

    Article  CAS  PubMed  Google Scholar 

  30. Hauser P, Kirch K, Kottmann F, Simons LM (1998) Absolute X-ray yield of light muonic atoms. Nucl Instrum Methods Phys Res Sect A 411:389–395

    Article  CAS  Google Scholar 

  31. Kadono R, Miyake Y (2012) MUSE, the goddess of muons, and her future. Rep Prog Phys 75:026302. https://doi.org/10.1088/0034-4885/75/2/026302

    Article  CAS  PubMed  Google Scholar 

  32. Miyake Y, Shimomura K, Kawamura N et al (2012) J-PARC muon facility, MUSE. Phys Procedia 30:46–49. https://doi.org/10.1016/j.phpro.2012.04.037

    Article  CAS  Google Scholar 

  33. Ninomiya K, Ito TU, Higemoto W et al (2011) Negative muon capture on nitrogen oxide molecules. J Korean Phys Soc 59:2917–2920

    Article  CAS  Google Scholar 

  34. Ninomiya K, Ito TU, Higemoto W et al (2019) Negative muon capture ratios for nitrogen oxide molecules. J Radioanal Nucl Chem 319:767–773. https://doi.org/10.1007/s10967-018-6366-3

    Article  CAS  Google Scholar 

  35. Hirayama H, Namito Y, Bielajew AF et al (2005) The EGS5 code system. SLAC-Report 730

  36. Kessler D, Anderson HL, Dixit MS et al (1967) μ-Atomic Lyman and Balmer series in Ti, TiO2. and Mn. Phys Rev Lett 18:1179–1183

    Article  CAS  Google Scholar 

  37. Hartmann FJ, von Egidy T, Bergmann R et al (1976) Measurement of the muonic X-ray cascade in metallic iron. Phys Rev Lett 37:331–334

    Article  CAS  Google Scholar 

  38. Huheey JE (1983) Inorganic chemistry. Harper & Row publishers, New York

    Google Scholar 

  39. Jean Y, Volatron F (1993) An introduction to molecular orbitals. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

Experiments were performed at the Materials and Life Science Experimental Facility of J-PARC under user programs (Proposal Nos. 2012A0039 and 2012B0103). This study was partially supported by a JSPS KAKENHI (Grant Numbers 26800213 and 261738).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Go Yoshida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, G., Ninomiya, K., Inagaki, M. et al. Initial quantum levels of captured muons in CO, CO2, and COS. J Radioanal Nucl Chem 320, 283–289 (2019). https://doi.org/10.1007/s10967-019-06470-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06470-4

Keywords

Navigation