Skip to main content
Log in

Synthesis and characterization of praseodymium-2-hydroxypropyl-β-cyclodextrin inclusion complex

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The inclusion complex of PrCl3-XH2O-2-hidroxypropyl-β-cyclodextrin (Pr-2HPβCD) was prepared to increase the solubility and stability of PrCl3-XH2O. As techniques of characterization, UV-Vis spectroscopy, scanning electron microscopy, X-ray diffraction, infrared spectroscopy, and Raman spectroscopy were used and confirmed the inclusion complex Pr-2HPβCD’s formation. By UV-Vis spectrophotometry, three wavelength regions were established to determine praseodymium in a wide range of concentration in the presence of 2-hidroxypropyl-β-cyclodextrin (2HPβCD). When the Pr-2HPβCD inclusion complex was irradiated with gamma radiation from cobalt-60 at doses between 1 and 500 Gy, the material not changed significantly. However, when the inclusion complex was irradiated between 5000 and 10,000 Gy, small changes occurred, showing that the inclusion complex began to decompose. The Pr-2HPβCD inclusion complex formation contributes to research with new applications of the praseodymium as a therapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baran EJ (2007) La Nueva Farmacoterapia Inorgánica. XVIII. Compuestos de lantánidos. Lat Am J Pharm 26:626–634

    CAS  Google Scholar 

  2. Abdelrahman AI (2011) Lanthanide-encoded polystyrene microspheres for mass cytometry-based bioassays. Ph. D. Thesis, Department of Chemistry, University of Toronto

  3. Lyra ME, Andreou M, Georgantzoglou A, Kordolaimi S, Lagopati N, Ploussi A, Salvara A-L, Vamvakas I (2013) Radionuclides used in nuclear medicine therapy–From production to dosimetry. Curr Med Imaging Rev 9:51–75

    Article  CAS  Google Scholar 

  4. IAEA-TECDOC-1228 (1999) Therapeutic applications of radiopharmaceuticals. In: Proceedings of an international seminar held in Hyderabad, India, 18–22 January 1999

  5. Zielhuis SW (2006) Lanthanide bearing radioactive particles for cancer therapy and multimodality imaging. Department of Nuclear Medicine, University Medical Center Utrecht (Utrecht, The Netherlands)

  6. Housecroft CE, Sharpe AG (2005) Inorganic chemistry, 2nd edn. Pearson Education Limited, United Kingdom

    Google Scholar 

  7. Lee S-W (2003) Beta dose calculation in human arteries for various brachytherapy seed types. Ph.D. Thesis. A&M University

  8. Jung JW, Reece WD (2008) Dosimetric characterization of 142Pr glass seeds for brachytherapy. Appl Radiat Isot 66:441–449

    Article  CAS  PubMed  Google Scholar 

  9. Vimalnath KV, Das MK, Venkatesh M, Ramamoorthy N (2005) Production logistics and prospects of 142Pr and 143Pr for radionuclide therapy (RNT) applications. In: 5th international conference on isotopes. Brussels, Belgium, April 25–29, pp 103–108

  10. Sadeghi M, Bakht MK, Mokhtari L (2011) Practicality of the cyclotron production of radiolanthanide 142Pr: a potential for therapeutic applications and biodistribution studies. J Radioanal Nucl Chem 288:937–942

    Article  CAS  Google Scholar 

  11. Bakht MK, Sadeghi M (2011) Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy. Ann Nucl Med 25:529–535

    Article  PubMed  Google Scholar 

  12. Bakht MK, Jabal-Ameli H, Ahmadi SJ, Sadeghi M, Sadjadi S, Tenreiro C (2012) Bremsstrahlung parameters of praseodymium-142 in different human tissues: a dosimetric perspective for 142Pr radionuclide therapy. Ann Nucl Med 26:412–418

    Article  CAS  PubMed  Google Scholar 

  13. Bakht MK, Sadeghi M, Ahmadi SJ, Sadjadi SS, Tenreiro C (2013) Preparation of radioactive praseodymium oxide as a multifunctional agent in nuclear medicine: expanding the horizons of cancer therapy using nanosized neodymium oxide. Nucl Med Commun 34:5–12

    Article  PubMed  Google Scholar 

  14. Marlina Soenarjo S, Anggraini R, Hakim EH (2013) Interaction of praseodymium (III) ion with various ligands: a preliminary study for the preparation of 142Pr(III) complex for therapeutic radiopharmaceutical candidate. Jurnal Sains dan Teknologi Nuklir Indonesia. Indones J Nucl Sci Tech 14:89–102

    Google Scholar 

  15. Loftsson T, Brewster ME (1996) Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 85:1017–1025

    Article  CAS  PubMed  Google Scholar 

  16. Loftsson T, Duchene D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11

    Article  CAS  PubMed  Google Scholar 

  17. Challa R, Ahuja A, Ali J, Khar RK (2005) Cyclodextrins in drug delivery: an updated review. AAPS Pharm Sci Tech 6:E329–E357

    Article  Google Scholar 

  18. Brewster ME, Loftsson T (2007) Cyclodextrin as pharmaceutical solubilizers. Adv Drug Deliv Rev 59:645–666

    Article  CAS  PubMed  Google Scholar 

  19. Vyas A, Saraf S, Saraf S (2008) Cyclodextrin based novel drug delivery systems. J Incl Phenom Macro 62:23–42

    Article  CAS  Google Scholar 

  20. Díaz Moscoso A (2010) Plataformas multifuncionales basadas en ciclodextrinas: Diseño de antitoxinas del ántrax y vectores de genes. Tesis doctoral, Instituto de Investigaciones Químicas del Consejo Superior de Investigaciones Científicas, Departamento de Química Orgánica, Universidad de Sevilla, Sevilla, España

  21. Szejtli J (1997) Utilization of cyclodextrins in industrial products and processes. J Mater Chem 7:575–587

    Article  CAS  Google Scholar 

  22. Devi LB, Mandal AB (2013) Self-assembly of Ag nanoparticles using hydroxypropyl cyclodextrin: synthesis, characterisation and application for the catalytic reduction of p-nitrophenol. RSC Adv 3:5238–5253

    Article  CAS  Google Scholar 

  23. Gould S, Scott RC (2005) 2-hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem Toxicol 43:1451–1459

    Article  CAS  PubMed  Google Scholar 

  24. Nishihira VSK, da Silva Fernandes L, Mortari SR, Platcheck Raffin R, Cielo Rech V (2013) Characterization of resveratrol/hydroxipropyl-β-cyclodextrin inclusion complex for subsequent application in hyperglicemic rats. Discip Sci Sér Ciênc Nat e Tecnol St 14:67–72

    Google Scholar 

  25. Lu Y, Liu S, Zhao Y, Zhu L, Yu S (2014) Complexation of Z-ligustilide with hydroxypropyl-β-cyclodextrin to improve stability and oral bioavailability. Acta Pharm 64:211–222

    Article  CAS  PubMed  Google Scholar 

  26. Nicolescu C, Aramă C, Nedelcu A, Monciu C-M (2010) Phase solubility studies of the inclusion complexes of repaglinide with β-cyclodextrin and β-cyclodextrin derivatives. Farmacia 58:620–628

    CAS  Google Scholar 

  27. Memisoglu-Bilensoy E, Atilla Hincal A (2006) Sterile, injectable cyclodextrin nanoparticles: effects of gamma irradiation and autoclaving. Int J Pharm 311:203–208

    Article  CAS  PubMed  Google Scholar 

  28. Patel R, Patel M (2010) Solid-state characterization and in vitro dissolution behavior of lorazepam: Hydroxypropyl-β-cyclodextrin inclusion complex. Drug Discov Ther 4:442–452

    CAS  PubMed  Google Scholar 

  29. Nicolic V, Nicolic L, Stankovic M, Kapor A, Popsavin M, Cvetkoviv D (2007) A molecular inclusion complex of atenolol with 2-hydroxypropyl-β-cyclodextrin; the production and characterization thereof. J Serb Chem Soc 72:737–746

    Article  CAS  Google Scholar 

  30. Tačić A, Savić I, Nikolić V, Savić I, Ilić-Stojanović S, Ilić D, Petrović S, Popsavin M, Kapor A (2014) Inclusion complexes of sulfanilamide with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin. J Incl Phenom Macro 80:113–124

    Article  CAS  Google Scholar 

  31. Jun SW, Kim M-S, Kim J-S, Park HJ, Lee S, Woo J-S, Hwang S-J (2007) Preparation and characterization of simvastatin/hydroxypropyl-β-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm 66:413–421

    Article  CAS  PubMed  Google Scholar 

  32. Zhang X, Wu D, Lai J, Lu Y, Yin Z, Wu W (2009) Piroxicam/2-hydroxypropyl-β-cyclodextrin inclusion complex prepared by a new fluid-bed coating technique. J Pharm Sci 98:665–675

    Article  CAS  PubMed  Google Scholar 

  33. Iohara D, Hirayama F, Higashi K, Yamamoto K, Uekama K (2011) Formation of stable hydrophilic C60 nanoparticles by 2-hydroxypropyl-β-cyclodextrin. Mol Pharm 8:1276–1284

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Jiménez Becerril.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-González, H., Moreno-Cruz, E., Rojas-Hernández, A. et al. Synthesis and characterization of praseodymium-2-hydroxypropyl-β-cyclodextrin inclusion complex. J Radioanal Nucl Chem 319, 837–845 (2019). https://doi.org/10.1007/s10967-018-6369-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6369-0

Keywords

Navigation