Skip to main content
Log in

A radioxenon detection system using PIPS and CZT

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper introduces and describes the initial characterizations of a prototype beta-gamma coincidence detection system that utilizes a PIPSBox and two coplanar CdZnTe detectors for atmospheric radioxenon identification and nuclear test ban treaty verification. Coincidences between four independent detecting bodies are identified in real time via a custom coincidence module implemented in a field-programmable gate array. The system is compact, maintains simple readout electronics, and provides high resolution radiation detection at room temperature operation. Preliminary measurements using 137Cs and 131mXe were conducted to optimize various system parameters to achieve optimal energy resolution of key spectral features. The purpose of this research was to explore the utility of these materials and methods for radioxenon monitoring in the International Monitoring System.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. MCNP and Monte Carlo N-Particle are registered trademarks of Triad National Security, LLC, and are being used with permission.

References

  1. Kalinowski MB, Tuma MP (2009) Global radioxenon emission inventory based on nuclear power reactor reports. J Environ Radioact 100:58–70. https://doi.org/10.1016/j.jenvrad.2008.10.015

    Article  CAS  PubMed  Google Scholar 

  2. Carrigan CR, Heinle RA, Hudson GB et al (1996) Trace gas emissions on geological faults as indicators of underground nuclear testing. Nature 382:528–531. https://doi.org/10.1038/382528a0

    Article  CAS  Google Scholar 

  3. Lowrey JD, Biegalski SR, Osborne AG, Deinert MR (2013) Subsurface mass transport affects the radioxenon signatures that are used to identify clandestine nuclear tests. Geophys Res Lett 40:111–115. https://doi.org/10.1029/2012GL053885

    Article  CAS  Google Scholar 

  4. Perkins RW, Casey LA (1996) Radioxenons: their role in monitoring a comprehensive test ban treaty. Department of Energy, Richland. DOE/RL–96-51, PNNL-SA–27750, 266641

  5. CTBTO Preparatory Commission (2012) Overview of the verification regime. https://www.ctbto.org/verification-regime/monitoring-technologies-how-they-work/radionuclide-monitoring/. Accessed 5 July 2016

  6. Fontaine J-P, Pointurier F, Blanchard X, Taffary T (2004) Atmospheric xenon radioactive isotope monitoring. J Environ Radioact 72:129–135. https://doi.org/10.1016/S0265-931X(03)00194-2

    Article  CAS  PubMed  Google Scholar 

  7. Browne E, Firestone RB (1986) Table of radioactive isotopes. Wiley, Berkeley

    Google Scholar 

  8. CTBTO Preparatory Commission (2012) Radionuclide monitoring. https://www.ctbto.org/verification-regime/monitoring-technologies-how-they-work/radionuclide-monitoring/. Accessed 5 July 2016

  9. Ringbom A, Larson T, Axelsson A et al (2003) SAUNA—a system for automatic sampling, processing, and analysis of radioactive xenon. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip 508:542–553. https://doi.org/10.1016/S0168-9002(03)01657-7

    Article  CAS  Google Scholar 

  10. Dubasov YV, Popov YS, Prelovskii VV et al (2005) The ARИKC-01 automatic facility for measuring concentrations of radioactive xenon isotopes in the atmosphere. Instrum Exp Tech 48:373–379. https://doi.org/10.1007/s10786-005-0065-3

    Article  CAS  Google Scholar 

  11. Le Petit G, Armand P, Brachet G et al (2008) Contribution to the development of atmospheric radioxenon monitoring. J Radioanal Nucl Chem 276:391–398. https://doi.org/10.1007/s10967-008-0517-x

    Article  CAS  Google Scholar 

  12. National Nuclear Data Center. http://www.nndc.bnl.gov/. Accessed 10 Oct 2018

  13. Schulze J, Auer M, Werzi R (2000) Low level radioactivity measurement in support of the CTBTO. Appl Radiat Isot 53:23–30. https://doi.org/10.1016/S0969-8043(00)00182-2

    Article  CAS  PubMed  Google Scholar 

  14. McIntyre J, Abel K, Bowyer T et al (2001) Measurements of ambient radioxenon levels using the automated radioxenon sampler/analyzer (ARSA). J Radioanal Nucl Chem 248:629–635

    Article  CAS  Google Scholar 

  15. Prelovskii VV, Kazarinov NM, Donets AY et al (2007) The ARIX-03F mobile semiautomatic facility for measuring low concentrations of radioactive xenon isotopes in air and subsoil gas. Instrum Exp Tech 50:393–397. https://doi.org/10.1134/S0020441207030165

    Article  CAS  Google Scholar 

  16. Cooper MW, McIntyre JI, Bowyer TW et al (2007) Redesigned β–γ radioxenon detector. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip 579:426–430. https://doi.org/10.1016/j.nima.2007.04.092

    Article  CAS  Google Scholar 

  17. Farsoni AT, Alemayehu B, Alhawsawi A, Becker EM (2013) A phoswich detector with compton suppression capability for radioxenon measurements. IEEE Trans Nucl Sci 60:456–464. https://doi.org/10.1109/TNS.2012.2226606

    Article  CAS  Google Scholar 

  18. Zhang F, He Z, Xu D (2004) Analysis of detector response using 3-D position sensitive CZT gamma-ray spectrometers. IEEE Trans Nucl Sci 51:3493–3497

    Google Scholar 

  19. He Z, Sturm BW (2005) Characteristics of depth-sensing coplanar grid CdZnTe detectors. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip 554:291–299. https://doi.org/10.1016/j.nima.2005.06.064

    Article  CAS  Google Scholar 

  20. CANBERRA Industries—Worldwide leader in radiation detectors & nuclear measurement. http://www.canberra.com/#2. Accessed 8 June 2018

  21. Griesmer JJ, Kline B, Grosholz J et al (2001) Performance evaluation of a new CZT detector for nuclear medicine: SOLSTICE. In: Nuclear science symposium conference record, 2001 IEEE. IEEE, pp 1050–1054

  22. Le Petit G, Cagniant A, Gross P et al (2015) Spalax™ new generation: a sensitive and selective noble gas system for nuclear explosion monitoring. Appl Radiat Isot 103:102–114. https://doi.org/10.1016/j.apradiso.2015.05.019

    Article  CAS  PubMed  Google Scholar 

  23. Mirion Technologies PIPS specification sheet, Series CD, Model PIPSBOX-2x1200-500A. Canberra Industries, Meriden, CT

  24. Czyz SA, Farsoni AT, Ranjbar L (2017) A prototype detection system for atmospheric monitoring of xenon radioisotopes. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip. https://doi.org/10.1016/j.nima.2017.10.044

    Article  Google Scholar 

  25. Le Petit G, Cagniant A, Morelle M et al (2013) Innovative concept for a major breakthrough in atmospheric radioactive xenon detection for nuclear explosion monitoring. J Radioanal Nucl Chem 298:1159–1169. https://doi.org/10.1007/s10967-013-2525-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Foxe MP, Hayes JC, Mayer MF et al (2016) Characterization of a commercial silicon beta cell. Pacific Northwest National Lab (PNNL), Richland

    Book  Google Scholar 

  27. Bläckberg L, Fritioff T, Mårtensson L et al (2013) Memory effect, resolution, and efficiency measurements of an Al2O3 coated plastic scintillator used for radioxenon detection. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip 714:128–135. https://doi.org/10.1016/j.nima.2013.02.045

    Article  CAS  Google Scholar 

  28. Home—Kromek. https://www.kromek.com/. Accessed 8 June 2018

  29. Luke PN (1994) Single-polarity charge sensing in ionization detectors using coplanar electrodes. Appl Phys Lett 65:2884–2886. https://doi.org/10.1063/1.112523

    Article  CAS  Google Scholar 

  30. Ranjbar L (2016) A two-element CZT-based radioxenon detection system for nuclear weapon test monitoring. PhD Dissertation, Oregon State University

  31. Ranjbar L, Farsoni AT, Becker EM (2016) A CZT-based radioxenon detection system in support of the Comprehensive Nuclear-Test-Ban Treaty. J Radioanal Nucl Chem 310:969–978. https://doi.org/10.1007/s10967-016-4872-8

    Article  CAS  Google Scholar 

  32. Czyz SA, Farsoni AT (2017) A radioxenon detection system using CdZnTe, an array of SiPMs, and a plastic scintillator. J Radioanal Nucl Chem 313:131–140. https://doi.org/10.1007/s10967-017-5287-x

    Article  CAS  Google Scholar 

  33. Ranjbar L, Farsoni AT, Becker EM (2017) 135Xe measurements with a two-element CZT-based radioxenon detector for nuclear explosion monitoring. J Environ Radioact 169–170:221–228. https://doi.org/10.1016/j.jenvrad.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  34. Becker EM (2016) Eight-channel digital spectrometer for coincidence measurements in multi-element detectors. CVT Workshop, Ann Arbor, MI

    Google Scholar 

  35. Mannino M (2017) Real-time temporal gamma spectroscopy in a field-programmable gate array. IEEE Nuclear Science Symposium & Medical Imaging Conference, Atlanta, GA

    Google Scholar 

  36. OpalKelly—Xilinx and Altera FPGA integration modules. https://opalkelly.com/. Accessed 9 Oct 2018

  37. Foxe MP, McIntyre JI (2015) Testing of the KRI-developed silicon PIN radioxenon detector, PNNL–23995, 1258733

  38. Cooper MW, Ely JH, Haas DA et al (2013) Absolute efficiency calibration of a beta-gamma detector. IEEE Trans Nucl Sci 60:676–680. https://doi.org/10.1109/TNS.2013.2243165

    Article  CAS  Google Scholar 

  39. Cooper MW, Carman AJ, Hayes JC et al (2005) Improved β–γ coincidence detector for radioxenon detection. In: Proceedings of the 27th seismic research review: ground-based nuclear explosion monitoring technologies, pp 779–786

  40. Mirion Technologies (2018) PIPSBOX-2x1200-500PA detectors. Canberra, Data Sheet OPS-309

  41. Cagniant A, Le Petit G, Gross P et al (2014) Improvements of low-level radioxenon detection sensitivity by a state-of-the art coincidence setup. Appl Radiat Isot 87:48–52. https://doi.org/10.1016/j.apradiso.2013.11.078

    Article  CAS  PubMed  Google Scholar 

  42. Werner CJ (ed) (2017) MCNP users manual—code version 6.2. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  43. History and License—Python 3.7.1 documentation. https://docs.python.org/3/license.html. Accessed 26 Oct 2018

Download references

Acknowledgements

This work was funded in-part by the Consortium for Verification Technology under Department of Energy National Nuclear Security Administration award number DE-NA0002534.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Czyz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czyz, S.A., Alhawsawi, A.M., Farsoni, A.T. et al. A radioxenon detection system using PIPS and CZT. J Radioanal Nucl Chem 319, 703–715 (2019). https://doi.org/10.1007/s10967-018-6367-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6367-2

Keywords

Navigation