Skip to main content
Log in

Simulation of radioactive decay by barium substitution for cesium in sodium aluminum-iron phosphate glass

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Simulation of 137Cs radioactive decay to 137Ba by an equiatomic substitution of Cs with Ba in a 30 Na2O, 10 Cs2O, 10 Al2O3, 10 Fe2O3, 40 P2O5 (mol%) glass was studied by X-ray diffraction, scanning electron microscopy, Fourier Transform Infrared spectroscopy, Mössbauer spectroscopy, and measurement of hydrolytic durability. Gradual Ba substitution for Cs yielded minor changes in the structural network but did not offer appreciable effect on phase composition and hydrolytic durability of the glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Day DE, Wu Z, Ray CS, Hrma P (1998) Chemically durable iron phosphate glass wasteforms. J Non Cryst Solids 241:1–12

    Article  CAS  Google Scholar 

  2. Marasinghe GK, Karabulut M, Ray CS, Day DE, Shuh DK, Allen PG, Saboungi ML, Grimsditch M, Haeffner D (2000) Properties and structure of vitrified iron phosphate nuclear wasteforms. J Non Cryst Solids 263&264:146–154

    Article  CAS  Google Scholar 

  3. Kim C-W, Ray CS, Zhu D, Day DE, Gombert D, Aloy A, Moguš-Milanković A, Karabulut M (2003) Chemically durable iron phosphate glasses for vitrifying sodium bearing waste (SBW) using conventional and cold crucible induction melting (CCIM) techniques. J Nucl Mater 322:152–164

    Article  CAS  Google Scholar 

  4. Day DE, Ray CS (2013) A review of iron phosphate glasses and recommendations for vitrifying hanford waste, INL/EXT-13-30839, INL. Idaho National Laboratory, USA

  5. Sheqi P, Xiaogang W, Chengcheng X, Wei S, Hailing Z, Yongpeng W (2017) Solidification of simulated α-HLLW in iron-phosphate glass-ceramics. In: Proceedings of the 20th Pacific basin nuclear conference, vol 3, pp 515–520

  6. Brezhneva NE, Minaev AA, Oziraner SN (1979) Vitrification of high sodium-aluminum wastes: composition ranges and properties. In: McCarthy GJ (ed) Scientific basis for nuclear waste management, vol 1. Plenum Press, New York, pp 43–50

    Chapter  Google Scholar 

  7. Vashman AA, Polyakov AS (eds) (1997) Phosphate glasses with radioactive waste. Tsniiatominform, Moscow

    Google Scholar 

  8. Stefanovsky SV, Stefanovsky OI, Kadyko MI, Presnyakov IA, Myasoedov BF (2015) The effect of Fe2O3 substitution for Al2O3 on the phase composition and structure of sodium-aluminum-iron phosphate glasses. J Non Cryst Solids 425:138–145

    Article  CAS  Google Scholar 

  9. Stefanovsky SV, Stefanovskaya OI, Vinokurov SE, Danilov SS, Myasoedov BF (2015) Phase composition, structure, and hydrolytic durability of glasses in the Na2O-Al2O3-(Fe2O3)-P2O5 system at replacement of Al2O3 by Fe2O3. Radiochemistry 57:348–355

    Article  CAS  Google Scholar 

  10. Stefanovsky SV, Stefanovsky OI, Remizov MB, Kozlov PV, Belanova EA, Makarovsky RA, Myasoedov BF (2017) Sodium-aluminum-iron phosphate glasses as legacy high level waste forms. Prog Nucl Energy 94:229–234

    Article  CAS  Google Scholar 

  11. Stefanovsky SV, Presniakov IA, Sobolev AV, Glazkova IA, Kadyko MI, Stefanovsky OI (2016) The effect of electron irradiation on the structure and iron speciation in sodium aluminum (Iron) phosphate glasses. J Nucl Mater 476:262–269

    Article  CAS  Google Scholar 

  12. Stefanovsky SV, Stefanovskaya OI, Kadyko MI, Nikonov BS, Myasoedov BF (2016) The effect of method of thermal treatment and irradiation on the structure of anionic motif and crystallization of uranium bearing phosphate glasses. Radiochemistry 58:654–661

    Article  CAS  Google Scholar 

  13. Stefanovsky SV, Stefanovsky OI, Myasoedov BF, Vinikurov SE, Danilov SS, Nikonov BS, Maslakov KI, Teterin YuA (2017) The phase composition, structure, and hydrolytic durability of sodium-aluminum-(iron)-phosphate glassy materials doped with lanthanum, cerium, europium, and gadolinium oxides. J Non Cryst Solids 471:421–428

    Article  CAS  Google Scholar 

  14. Lutze W (1988) Silicate glasses. In: Lutze W, Ewing RC (eds) Radioactive waste forms for the future. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  15. Weber WJ, Ewing RC, Angell CA, Arnold GW, Cormack AN, Delaye JM, Griscom DL, Hobbs LW, Navrotsky A, Price DL, Stoneham AM, Weinberg MC (1997) Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition. J Mater Res 12:1946–1975

    Article  Google Scholar 

  16. Strachan DM, Scheele RD, Buck EC, Icenhower JP, Kozelisky AE, Sell RL, Elovich RJ, Buchmiller WC (2005) Radiation damage effects in candidate titanates for Pu disposition: pyrochlore. J Nucl Mater 345:109–135

    Article  CAS  Google Scholar 

  17. Sun K, Ding T, Wang LM, Ewing RC (2004) Radiation-induced nanostructures in an iron-phosphate glass. Mater Res Soc Symp Proc 792:R3.21.1

    Google Scholar 

  18. Sun K, Wang LM, Ewing RC (2004) Microstructure and chemistry of an aluminophosphate glass waste form under electron beam irradiation. Mater Res Soc Symp Proc 807:121–126

    Article  CAS  Google Scholar 

  19. Sun K, Wang LM, Ewing RC, Weber WJ (2005) Effects on electron irradiation in nuclear waste glasses. Philos Mag 85:597–608

    Article  CAS  Google Scholar 

  20. Jegadeesan P, Amirthapandian S, Joseph K, David C, Panigrahi BK, Kutty KVG (2015) Ion irradiation induced crystallization in iron phosphate glass—TEM investigations. Adv Mater Lett 6:224–227

    Article  CAS  Google Scholar 

  21. Gandy AS, Stennett MC, Brigden C, Hyatt NC (2015) Ion beam irradiation induced structural modifications in iron phosphate glasses: a model system for understanding radiation damage in nuclear waste glasses. Mater Res Soc Symp Proc. https://doi.org/10.1557/opl.2015.218

    Article  Google Scholar 

  22. Gray WJ (1982) Fission product transmutation effects on high-level radioactive waste forms. Nature 296:547–549

    Article  CAS  Google Scholar 

  23. Joseph K, Stennett MC, Hyatt NC, Asuvatharam R, Dube CL, Gandy AS, Govindan Kutty KV, Jolley K, Vasudeva Rao PR, Smith R (2017) Iron phosphate glasses: bulk properties and atomic scale structure. J Nucl Mater 494:342–353

    Article  CAS  Google Scholar 

  24. Matsnev ME, Rusakov VS (2012) SpectrRelax: an application for Mössbauer spectra modeling and fitting. AIP Conf Proc 1489:178–185

    Article  CAS  Google Scholar 

  25. ASTM Standard C 1285-94 (1994) Standard Test methods for determining chemical durability of nuclear waste glasses: the product consistency test (PCT). ASTM, Philadelphia

    Google Scholar 

  26. Jantzen CM, Bibler NE, Beam DC (1992) Characterization of the defense waste processing facility (DWPF) environmental assessment (EA) Glass Standard Reference Material. WSRC-TR-92-346

  27. Chemical durability and related properties of solidified high-level waste forms (1985). Technical reports series No. 257, IAEA, Vienna

  28. Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds. Part A, 6th edn. Wiley, Hoboken

    Google Scholar 

  29. Lazarev AN, Mirgorodskiy AP, Ignat’ev IS (1975) Vibrational spectra of complex oxides (Russ.). Nauka, Leningrad

    Google Scholar 

  30. Dyer MD (1985) A review of Mössbauer data on inorganic glasses: the effects of composition on iron valency and coordination. Am. Miner 70:304–316

    Google Scholar 

  31. Weber WJ, Roberts FP (1983) A review of radiation effects in solid nuclear waste forms. Nucl Technol 60:178–198

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out within the frame of the State Assignment No. AAAA-A16-116110910010-3 between the Russian Academy of Sciences and the Ministry of Science and High Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Stefanovsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanovsky, S.V., Stefanovsky, O.I., Prusakov, I.L. et al. Simulation of radioactive decay by barium substitution for cesium in sodium aluminum-iron phosphate glass. J Radioanal Nucl Chem 319, 817–826 (2019). https://doi.org/10.1007/s10967-018-6365-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6365-4

Keywords

Navigation