Skip to main content
Log in

Heating factors of gas targets for radioactive ion beam production

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

At low-energy nuclear physics facilities, the in-flight fragmentation method is often employed to produce radioactive ion beams. This technique often involves a stable ion beam at high intensity and a gas cell target. Since the parameters for the production reaction are usually chosen to take advantage of a large cross section of the resonance reaction, a slight change in the center-of-mass energy due to the reduced target density may significantly affect the rare isotope production rate. Therefore, to estimate the heating effect due to beam particles on the target thickness, a new and more comprehensive semi-empirical model is developed by employing a heating factor function. The estimated heating factors were consistent with experimental data, which were obtained from various reaction measurements at wide ranges of heat densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

This figure is taken from Ref. [8]

Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thoennessen M (2010) Nucl Phys A 834:688c

    Article  CAS  Google Scholar 

  2. Gade A, Sherrill BM (2016) Phys Scr 91:053003

    Article  CAS  Google Scholar 

  3. Sakurai H (2008) Nucl Phys A 805:526c

    Article  CAS  Google Scholar 

  4. Tshoo K, Kim YK, Kwon YK, Woo HJ, Kim GD, Kim YJ, Kang BH, Park SJ, Park YH, Yoon JW, Kim JC, Lee JH, Seo CS, Hwang W, Yun CC, Jeon D, Kim SK (2013) Nucl Instrum Methods Phys Res B 317:242

    Article  CAS  Google Scholar 

  5. Kang BH, Kim GD, Woo HJ, Tshoo KH, Hwang WJ, Jang DY, Jeong SC, Kim YK (2013) J Korean Phys Soc 63:1473

    Article  Google Scholar 

  6. Kwon YK, Kim YK, Komatsubara T, Moon JY, Park JS, Shin TS, Kim YJ (2014) AIP Conf Proc 1594:190

    Article  Google Scholar 

  7. Tshoo K, Chae H, Park J, Moon JY, Kwon YK, Souliotis GA, Hashimoto T, Akers C, Berg GPA, Choi S, Jeong SC, Kato S, Kim YK, Kubono S, Lee KB, Moon CB (2016) Nucl Instrum Methods Phys Res B 376:188

    Article  CAS  Google Scholar 

  8. Kwon YK (2016) RISP Report No. 20/7/2016 (unpublished)

  9. Kubono S, Yanagisawa Y, Teranishi T, Kato S, Kishida Y, Michimasa S, Ohshiro Y, Shimoura S, Ue K, Watanabe S, Yamazaki N (2002) Eur Phys J A 13:217

    CAS  Google Scholar 

  10. Yanagisawa Y, Kubono S, Teranishi T, Ue K, Michimasa S, Notani M, He JJ, Ohshiro Y, Shimoura S, Watanabe S, Yamazaki N, Iwasaki H, Kato S, Kishida T, Morikawa T, Mizoi Y (2005) Nucl Instrum Methods Phys Res A 539:74

    Article  CAS  Google Scholar 

  11. Duy NN, Chae KY, Cha SM, Yamaguchi H, Abe K, Bae SH, Binh DN, Choi SH, Hahn KI, Hayakawa S, Hong B, Iwasa N, Kahl D, Khiem LH, Kim A, Kim DH, Kim EJ, Kim GW, Kim MJ, Kwak K, Kwag MS, Lee EJ, Lim SI, Moon B, Moon JY, Park SY, Phong VH, Shimizu H, Yang L, Ge Z, Nhan Hao TV (2018) Nucl Instrum Methods Phys Res A 897:8

    Article  CAS  Google Scholar 

  12. Scharrer P, Düllmann CE, Barth W, Khuyagbaatar J, Yakushev A, Bevcic M, Gerhard P, Groening L, Horn KP, Jäger E, Krier J, Vormann H (2017) Phys Rev Accel Beams 20:043503

    Article  Google Scholar 

  13. Imao H, Okuno H, Kuboki H, Yokouchi S, Fukunishi N, Kamigaito O, Hasebe H, Watanabe T, Watanabe Y, Kase M, Yano Y (2012) Phys Rev ST Accel Beams 15:1223501

    Article  CAS  Google Scholar 

  14. Olson CL, Hinshelwood DD, Hubbard RF, Lampe M, Neri JM, Ottinger PF, Poukey JW, Rose DV, Slinker SP, Stephanakis SJ, Welch DR, Young FC (1993) Il Nuovo Cimento A 106:1705

    Article  Google Scholar 

  15. Gorres J, Kettner KU, Krawinkel H, Rolfs C (1980) Nucl Instrum Methods Phys Res 177:295

    Article  Google Scholar 

  16. Marta M, Confortola F, Bemmerer D, Boiano C, Bonetti R, Broggini C, Casanova M, Corvisiero P, Costantini H, Elekes Z, Formicola A, Fulop Z, Gervinog G, Guglielmetti A, Gustavino C, Gyurky G, Imbriani G, Junker M, Lemut A, Limata B, Menegazzo R, Prati P, Roca V, Rolfs C, Romano M, Rossi AC, Somorjai E, Strieder F, Terrasi F, Trautvetter HP (2006) Nucl Instrum Methods Phys Res A 569:727

    Article  CAS  Google Scholar 

  17. Yamaguchi H, Wakabayashi Y, Amadio G, Hayakawa S, Fujikawa H, Kubono S, He JJ, Kim ADN, Binh DN (2008) Nucl Instrum Methods Phys Res A 589:150

    Article  CAS  Google Scholar 

  18. Trautvetter HP, Elix K, Rolfs C, Brand K (1979) Nucl Instrum Methods Phys Res 161:173

    Article  CAS  Google Scholar 

  19. Bazin D, Tarasov OB, Lewitowicz M, Sorlin D (2002) Nucl Instrum Methods Phys Res A 482:307

    Article  CAS  Google Scholar 

  20. Tarasov OB, Bazin D (2008) Nucl Instrum Methods Phys Res B 266:4657

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MEST) (Nos. NRF2017R1D1A1B03030019, NRF2018M7A1A1072274, and NRF2016R1A5A1013277). This work was also supported by LG Yonam Foundation (of Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Chae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duy, N.N., Chae, K.Y., Pham, V.N.T. et al. Heating factors of gas targets for radioactive ion beam production. J Radioanal Nucl Chem 319, 33–38 (2019). https://doi.org/10.1007/s10967-018-6262-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6262-x

Keywords

Navigation